Applied Compositional Thinking for Engineers

Session 7

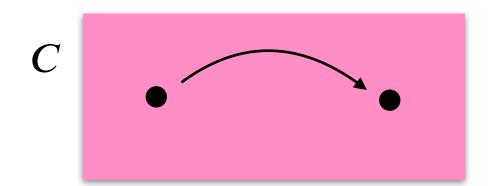
Life is hard

The story so far

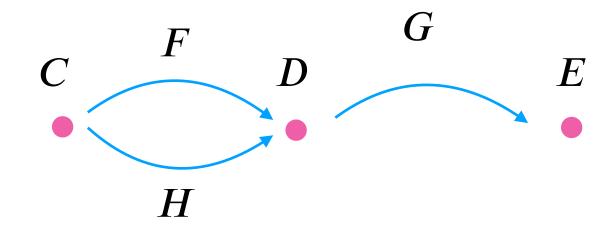
- We have defined what is a category and provided several examples.
- We have defined notions of product, coproduct, subcategory, etc.
- We have been looking at posets and how they represent trade-offs.
- We have seen how posets can be interpreted as categories.
- Today:
 - Monotone functions
 - Lattices; meet, join. Interpretation as product/coproduct.
 - Functors as generalization of monotone functions on posets.

Looking ahead

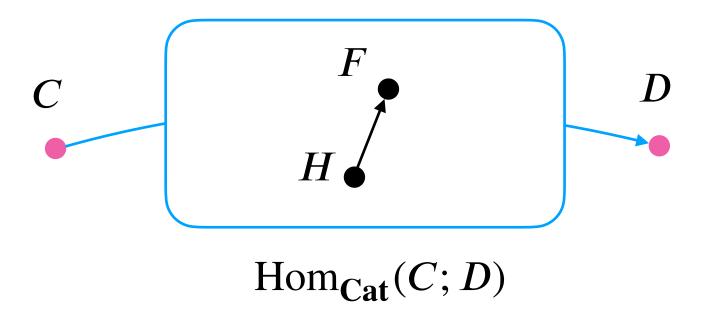
In a category, morphisms are arrows between objects.

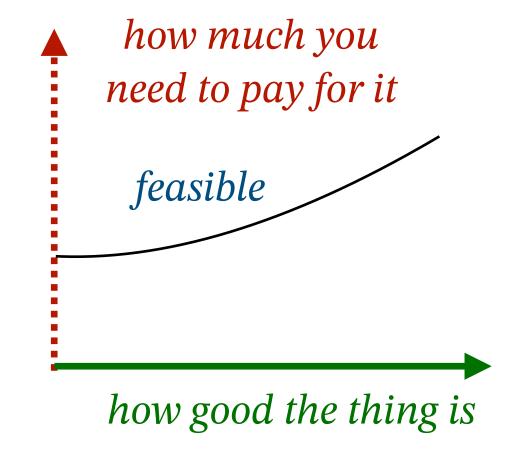


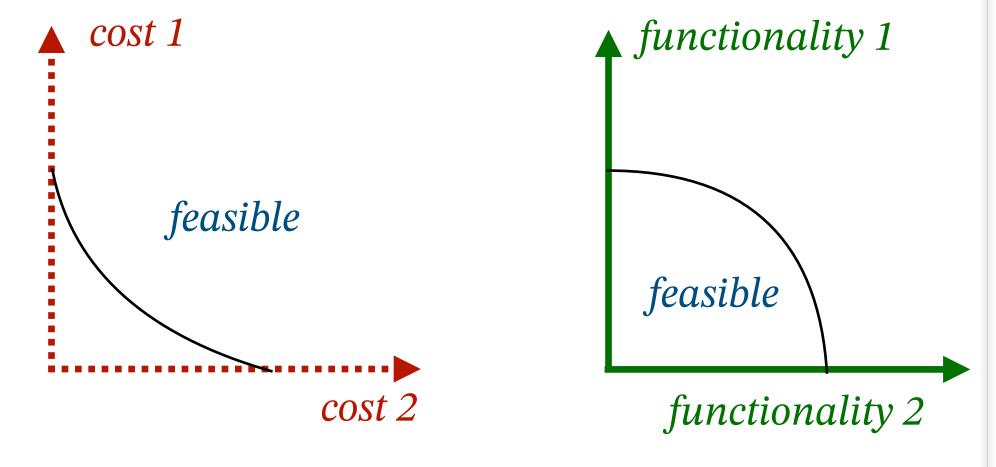
In the category of categories Cat, functors are arrows between categories.



• Natural transformations are arrows between functors with same domain/codomain.





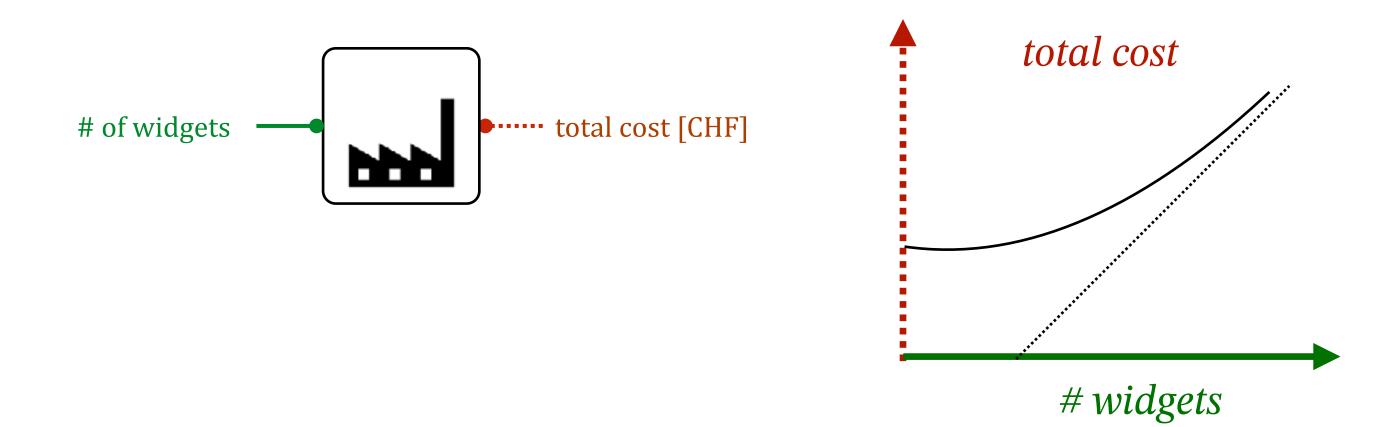


Monotone functions

• Monotone functions on \mathbb{R} = "non-decreasing functions".

• Examples: all dimensioning relations in engineering:

• Example: Manufacturing cost as a function of # of widgets.

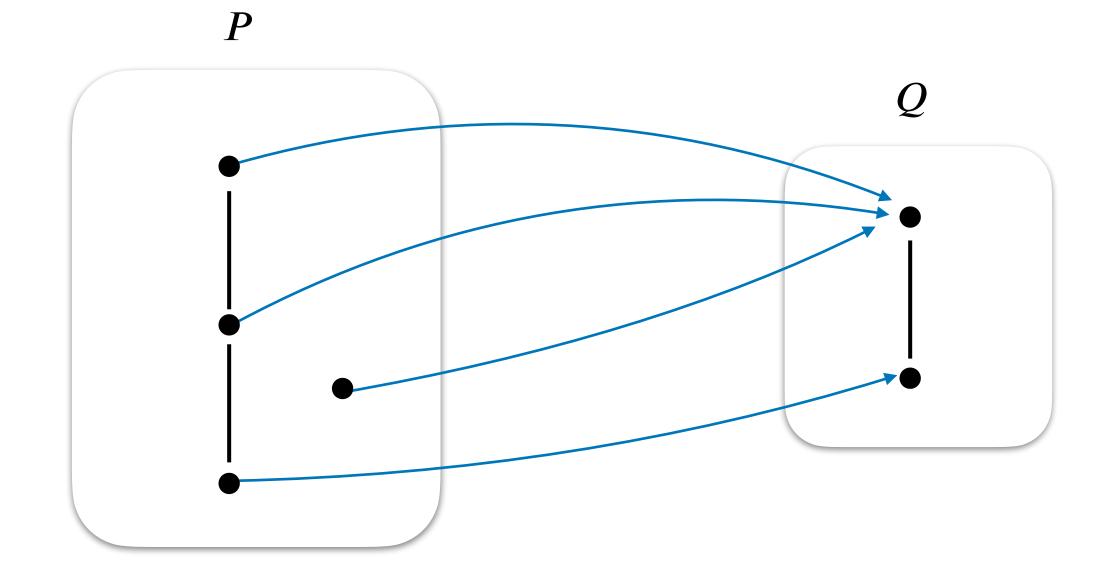


Monotone functions on posets

• A function $f:\langle P,\leq_P\rangle\to\langle Q,\leq_Q\rangle$ is monotone iff

$$a \leq_P b$$

$$f(a) \leq_Q f(b)$$



• It is an **order isomorphism** if it is **injective** and

Rounding functions

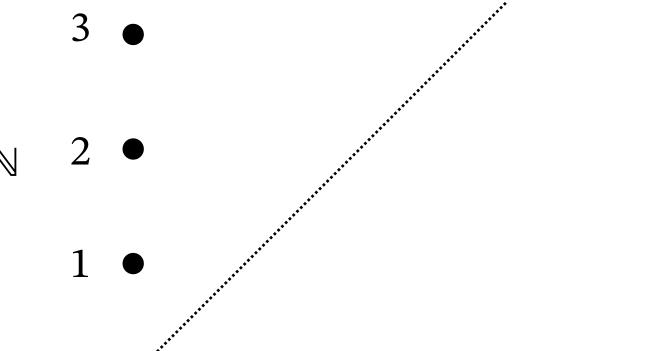
• There are a few **rounding functions**:

$$\mathsf{ceil} \,:\, \langle \mathbb{R}, \leq \rangle \to \langle \mathbb{N}, \leq \rangle$$

floor:
$$\langle \mathbb{R}, \leq \rangle \to \langle \mathbb{N}, \leq \rangle$$

rtntte:
$$\langle \mathbb{R}, \leq \rangle \rightarrow \langle \mathbb{N}, \leq \rangle$$

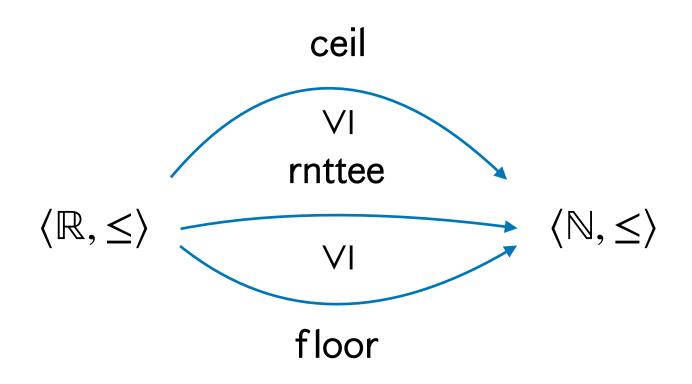
"round to nearest, ties to even" (default IEEE-754)



0

Also note:

$$\forall x \in \mathbb{R} : floor(x) \le rtntte(x) \le ceil(x)$$



3

 \mathbb{R}

Upper and lower bounds

► The **upper bounds** of a subset *S* of a poset *P* are, <u>if they exist</u>, the elements that dominate all elements in *S*.

- The **least upper bound**, if it exists, is the least among the upper bounds of S. We also call it the *join*, *supremum*, \vee S.
- The least upper bound need not exist.

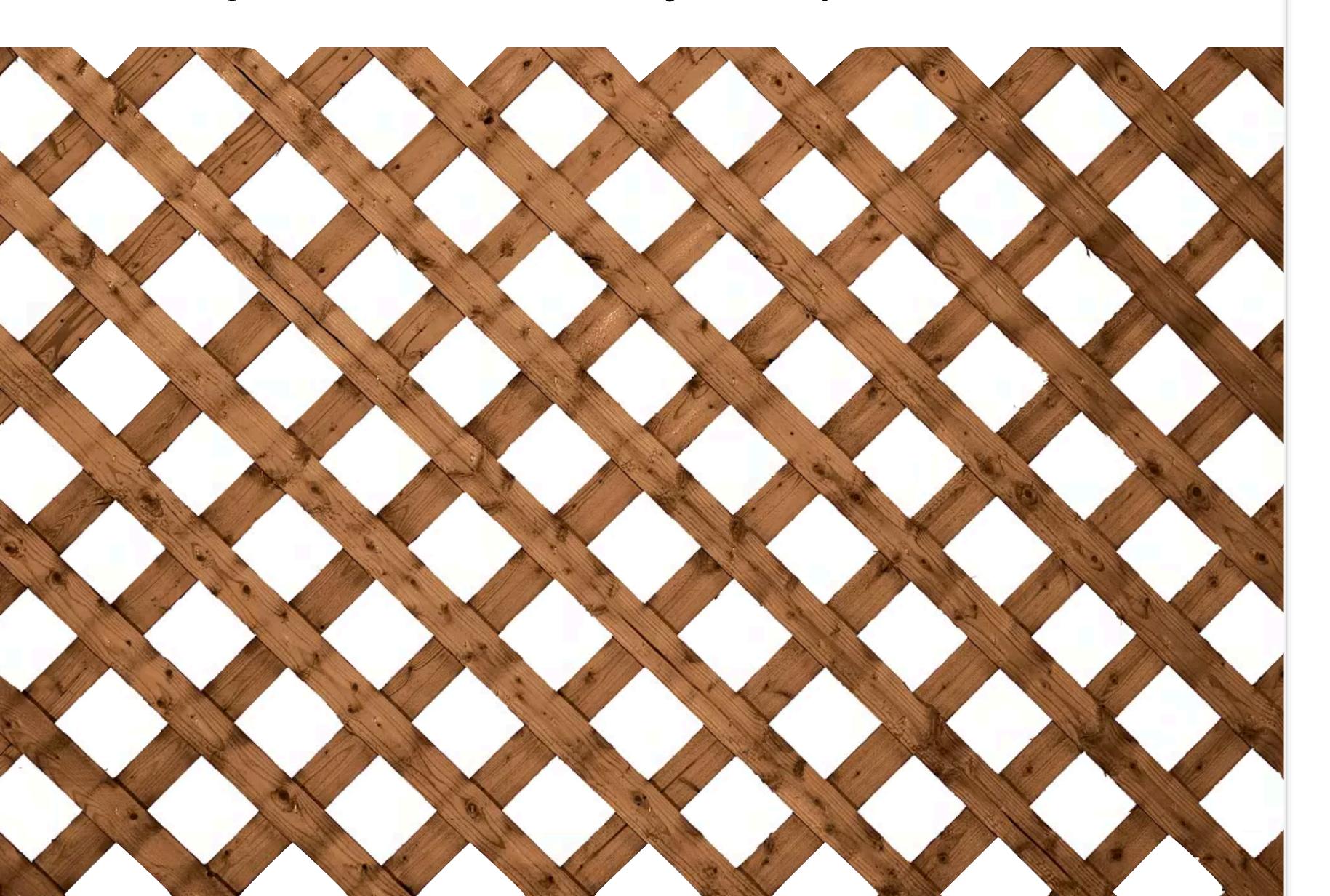
The least upper bound need not exist even in a total order.

$$\mathbb{R}_{>0} = \{x \in \mathbb{R} : x > 0\}$$

▶ Dually: define **lower bound**, also called **meet**, **minimum**, $\land S$.

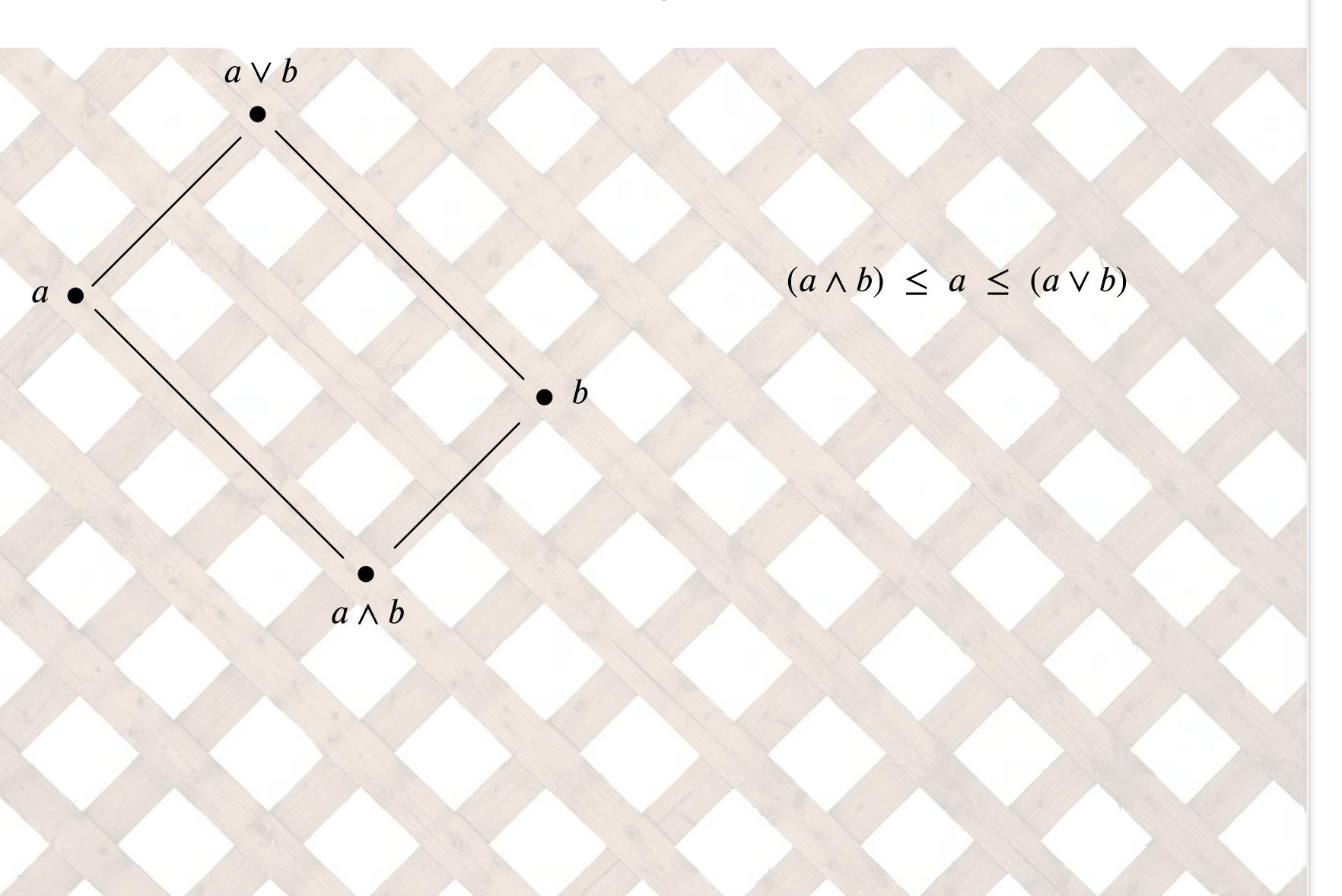
Lattices

► **Lattices** are posets where the **meet** ∧ and the **join** ∨ always exist.



Lattices

► **Lattices** are posets where the **meet** ∧ and the **join** ∨ always exist.



Lattices

- Lattices are posets where the **meet** \land and the **join** \lor always exist.
- Example: Consider a poset **Propositions** where:
 - the elements are propositions (equivalence classes of propositions)
 - the partial order is given by

$$a \leq b$$

$$a \Rightarrow b$$

- This is a lattice with the logical operations \land and \lor .

 $a \lor b$

 $a \wedge b$

 $a \lor b \lor c$

 $a \wedge b \wedge c$

 $b \lor c$

 $b \wedge c$

 $a \Rightarrow a$

Powersets

- Lattices are posets where the **meet** \land and the **join** \lor always exist.
- Example: The **power set** $\mathcal{P}(S)$ (set of all subsets) of a set S is a lattice with:

$$a \le b \doteq a \subseteq b$$

$$-a \lor b \doteq a \cup b$$

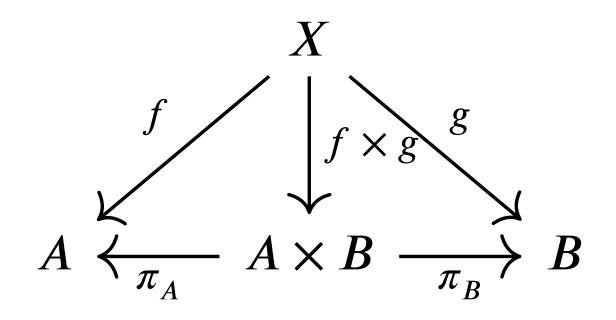
$$-a \wedge b \doteq a \cap b$$

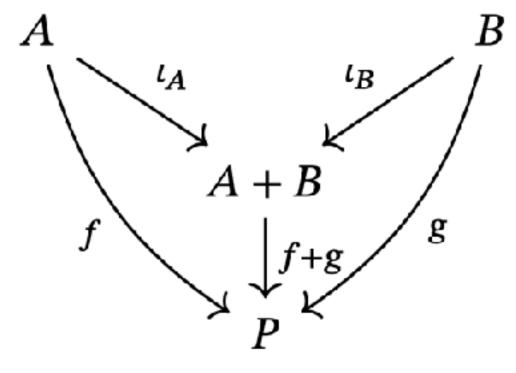
$$T = S$$

$$\bot = \emptyset$$

In a lattice, meet and join are product and co-product

- If you see a lattice as a category:
 - the **meet** \wedge is the **product** in the category.
 - the **join** \vee is the **co-product** in the category.





$$f: \left[\begin{array}{c} X \\ \hline A \end{array}\right] \quad g: \left[\begin{array}{c} X \\ \hline B \end{array}\right]$$

$$f: \left(\begin{array}{c} A \\ \hline P \end{array}\right) \quad g: \left(\begin{array}{c} B \\ \hline P \end{array}\right)$$

$$f \times g : \frac{X}{A \wedge B}$$

$$f+g: \left[rac{A \lor B}{P}
ight]$$

$$\pi_A: \left[egin{array}{c} A \wedge B \ \hline A \end{array}
ight] \qquad \pi_B: \left[egin{array}{c} A \wedge B \ \hline B \end{array}
ight]$$

$$i_A: \left(\frac{A}{A \vee B} \right) \qquad i_B: \left(\frac{B}{A \vee B} \right)$$

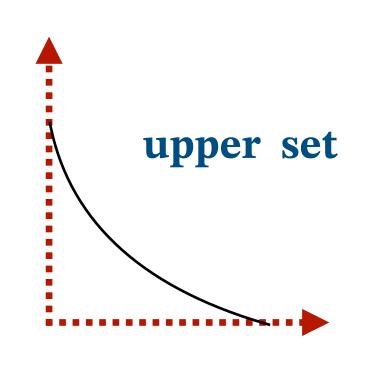
Upper/lower sets

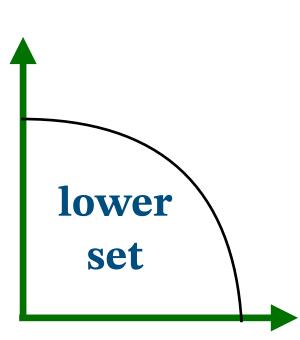
- An **upper set** is a subset of a poset such that, if x is in the poset, all "higher" elements are.
- A **lower set** is a subset of a poset such that, if x is in the poset, all "lower" elements are.

$$x \in U \qquad x \le y$$
$$y \in U$$

$$x \in L \qquad y \le x$$

$$y \in U$$





Let **U***P* and **L***P* be the sets of all upper/lower sets. These are posets choosing:

$$\langle \mathbf{U}P, \supseteq \rangle$$
 $T = \emptyset$ $\bot = P$

$$T = \emptyset$$

$$\perp = P$$

$$\langle \mathbf{L}P,\subseteq
angle$$

$$T = P$$

$$T = P$$
 $\perp = \emptyset$

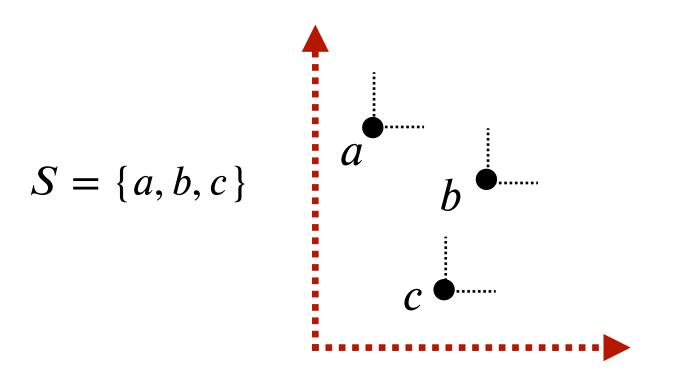
Upper / lower closure

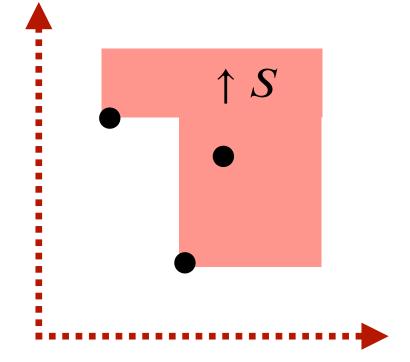
• The **upper closure** of an element is the set of elements that dominate it:

$$\uparrow a \doteq \{x \in P : a \le x\}$$

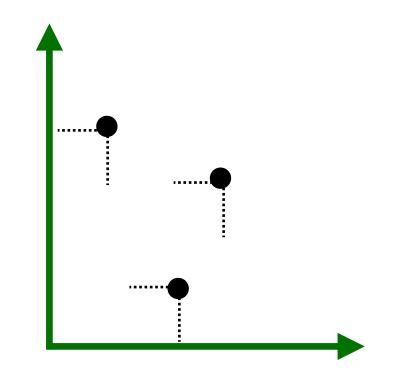
Upper closure of a set:

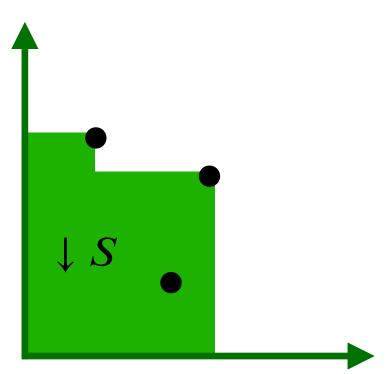
$$\uparrow S \doteq \cup_{a \in S} \uparrow a$$





• Lower closure is defined symmetrically:



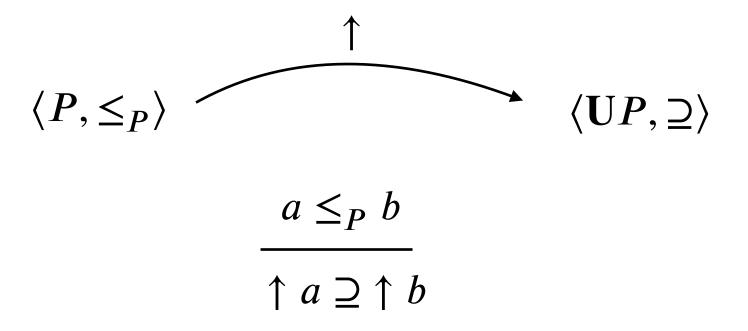


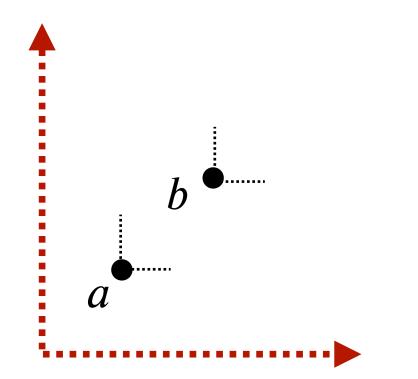
Upper / lower closure

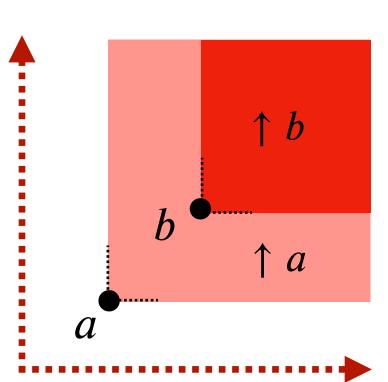
• The **upper closure** of an element is the set of elements that dominate it:

$$\uparrow a \doteq \{x \in P : a \le x\}$$

Upper closure is a monotone function:







Functors

• A functor $F: C \to D$ between two categories is defined by two maps:

- a map from objects to objects $f_0: \mathrm{Ob}_C \to \mathrm{Ob}_C$

- maps from hom-sets to hom-sets f_{ab} : $\operatorname{Hom}(a;b) \to \operatorname{Hom}(f_0(a);f_0(b))$

• (We overload the notation and write *F* for both functions.)

These maps need satisfy two conditions:

- Identities map to identities: $F(Id_a) = Id_{F(a)}$

- Composition is respected: F(g;h) = F(g); F(h)

Monotone functions as functors

- A **functor** $F: C \to D$ need satisfy two conditions:
 - Identities map to identities: $F(Id_a) = Id_{F(a)}$
 - Composition is respected: F(g;h) = F(g); F(h)
- A function $f:\langle P,\leq_P\rangle\to\langle Q,\leq_Q\rangle$ is monotone iff

$$a \leq_P b$$

$$f(a) \leq_Q f(b)$$

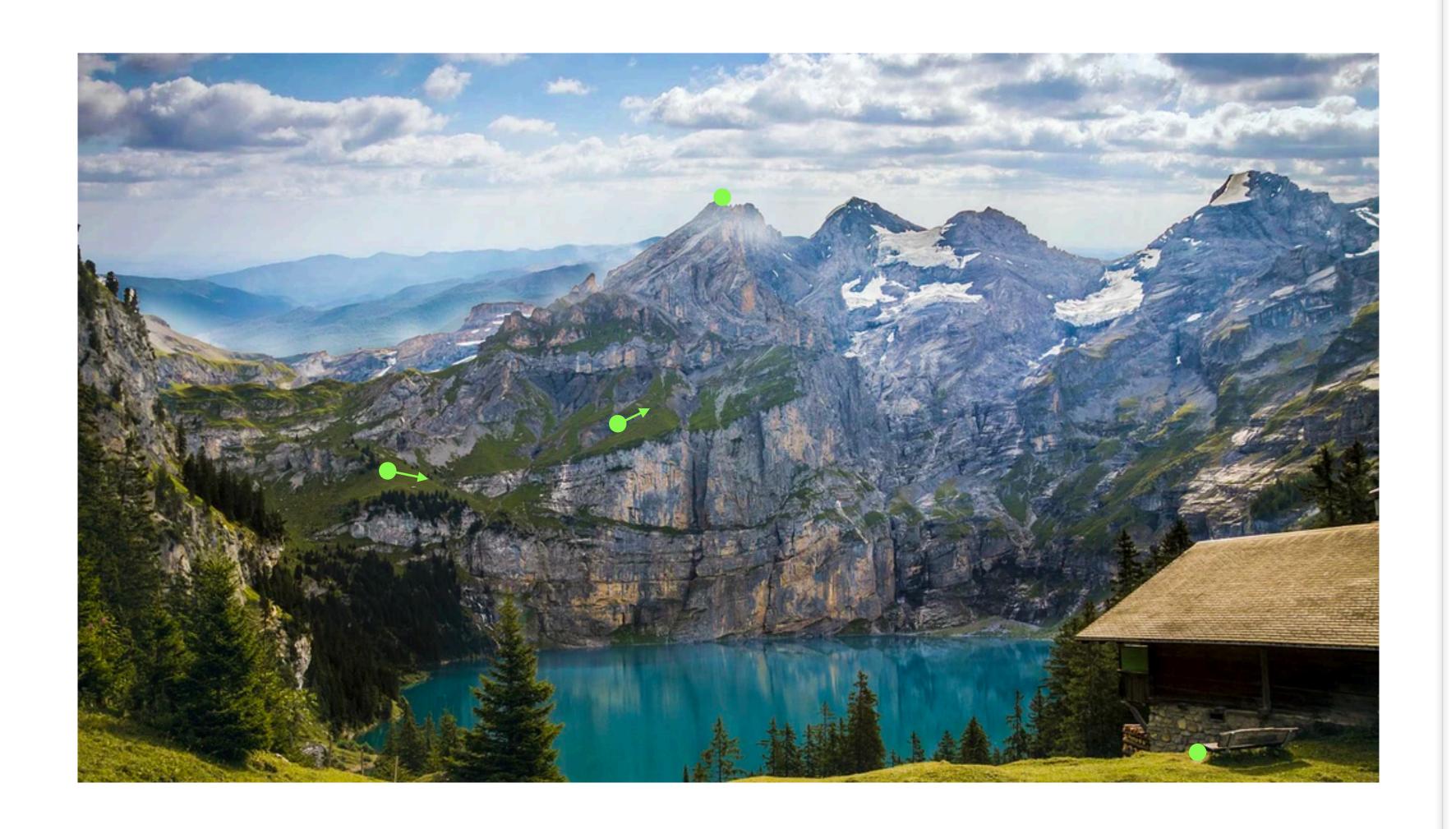
$$\langle Q, \leq_Q \rangle$$

$$\langle P, \leq_P \rangle$$

$$Q, \leq_{O} \rangle$$

Back to the Swiss Mountains

- Berg: objects are (position, velocities) tuples; morphisms are continuous paths.
- ▶ **BergAma**: subcategory of Berg where inclination ≤ 1/2.



Elevation as a functor

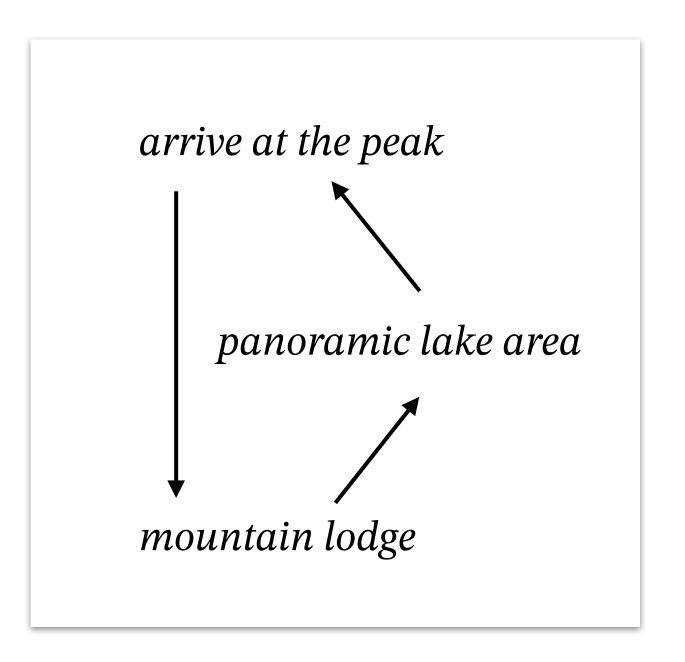
- Berg: objects are (position, velocities) tuples; morphisms are continuous paths.
- ▶ **BergAma**: subcategory of Berg where inclination $\leq 1/2$.
- ► There is a functor elevation from Berg to elevation profiles.



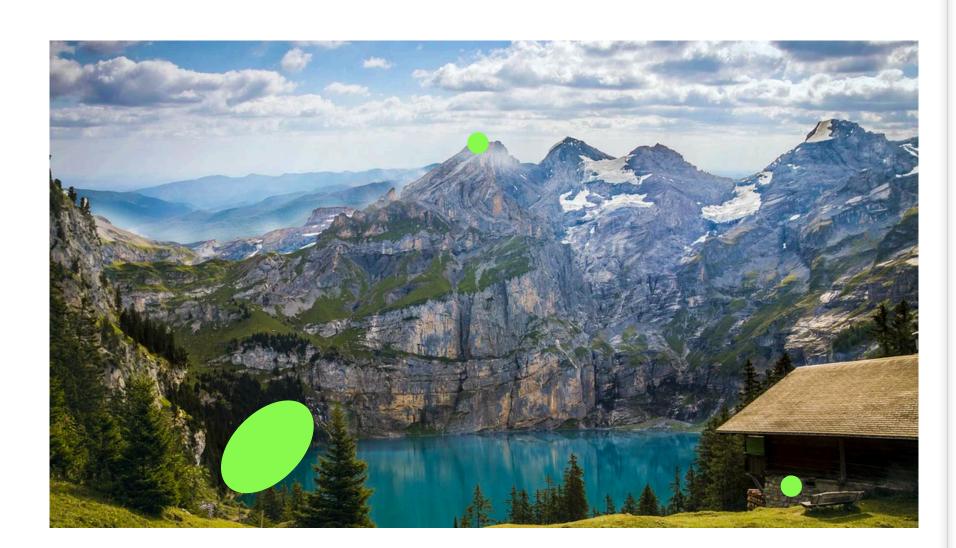
Path planning as the search for a functor

- Berg: objects are (position, velocities) tuples; morphisms are continuous paths.
- ▶ **BergAma**: subcategory of Berg where inclination $\leq 1/2$.
- Define a category **Plans** where objects are areas of the mountain and morphisms describe visiting order constraints.

Plans



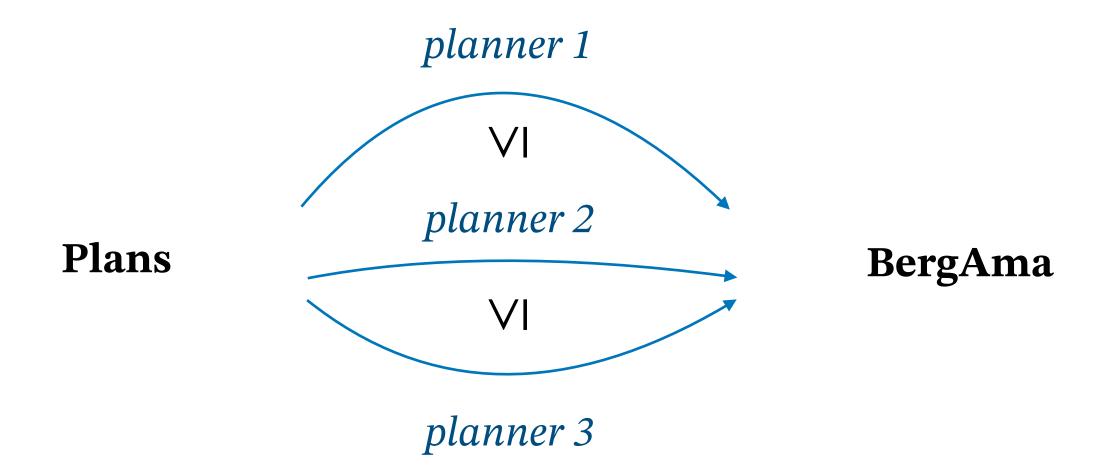
BergAma



- A **Plan** is a morphism in Plans.
- ▶ Planning means finding a functor from Plans to BergAma.

Path planning as the search for a functor

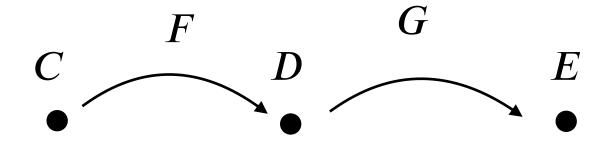
- Berg: objects are (position, velocities) tuples; morphisms are continuous paths.
- ▶ **BergAma**: subcategory of Berg where inclination $\leq 1/2$.
- Define a category **Plans** where objects are areas of the mountains and morphisms describe order constraints.



- A **Plan** is a morphism in Plans.
- Planning means finding a functor from Plans to BergAma.
- An optimal planner is one that chooses the shortest paths.

A category of categories

- There exists a category of (small) categories called Cat:
 - objects are categories
 - morphisms are functors
 - the identities are identity functors



Need to prove that functors compose and that composition is associative:

$$F: C \to D \qquad G: D \to E$$

$$F(\mathrm{Id}_a) = \mathrm{Id}_{F(a)}$$

$$F(g; h) = F(g); F(h)$$

$$F(g; h) = F(g); F(h)$$

