Applied Compositional Thinking for Engineers

Session 7

Life is hard



The story so far

We have defined what is a category and provided several examples.
We have defined notions of product, coproduct, subcategory, etc.

We have been looking at posets and how they represent trade-offs.

We have seen how posets can be interpreted as categories.

Today:
- Monotone functions
- Lattices; meet, join. Interpretation as product/coproduct.

- Functors as generalization of monotone functions on posets.



Looking ahead

> In a category, morphisms are arrows between objects.
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> In the category of categories Cat, functors are arrows between categories.
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Monotone functions

>~ Monotone functions on R = “non-decreasing functions”.

~ Examples: all dimensioning relations in engineering:
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>~ Example: Manufacturing cost as a function of # of widgets.
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Monotone functions on posets

. A function f : (P, <p) = (O, <p) is monotone iff
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> It is an order isomorphism if it is injective and

aSPb

f(a) <0 J(b)



Rounding functions

>~ There are a few rounding functions:

ceil : (R, <) - (N, <) 3 @
floor : (R, <) — (N, <)
N 2 @
rtntte : (R, <) — (N, <)
“round to nearest, ties to even” 1 e
(default IEEE-754)
® ® ® ® > R
0 1 2 3

> Also note:

Vx eR : floor(x) < rtntte(x) < ceil(x)
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Upper and lower bounds

The upper bounds of a subset S of a poset P are, if they exist,
the elements that dominate all elements in S.

The least upper bound, if it exists, is the least among the upper bounds of S.
We also call it the join, supremum, V S.

The least upper bound need not exist.

The least upper bound need not exist even in a total order.
Ryp=1x€R : x>0}

Dually: define lower bound, also called meet, minimum, AS.






Lattices

> Lattices are posets where the meet A and the join Vv always exist.
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Lattices

> Lattices are posets where the meet A and the join Vv always exist.

~ Example: Consider a poset Propositions where:

a<b
- the elements are propositions (equivalence classes of propositions)
a —
- the partial order is given by
a<b
T
a=>b
a=a
- This is a lattice with the logical operations A and V .
T (a=>b)AN(b=> c)
ﬂ a=_¢
aVbVc
/AN
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Powersets

> Lattices are posets where the meet A and the join Vv always exist.

- Example: The power set 2(.5) (set of all subsets) of a set S is a lattice with:
- alb=acChb
- aVb =auUb
- aANb =anb

- T =9
1= S
UI
aUbUc
2N
auUb bUc
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anb bnc
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UI



In a lattice, meet and join are product and co-product

> If you see a lattice as a category:
- the meet A is the product in the category.

- the join v is the co-product in the category.

A
P
X X A B
f g f: g
A B P P
1 X Fi AV B
X8 g
AAB P
AANB AANB A B
T 5 Ty . LA !B



Upper/lower sets

>~ An upper set is a subset of a poset such that, if x is in the poset, all “higher” elements are.

~ A lower set is a subset of a poset such that, if x is in the poset, all “lower” elements are.

xeU x <Yy xX €L y<Xx

yelU yelU

upper set

>~ Let UP and LP be the sets of all upper/lower sets. These are posets choosing:

(UP, D) T=¢ 1l=P

(LP,C) —p 1=0




Upper / lower closure

~ The upper closure of an element is the set of elements that dominate it:

la={xe P :a<x}
~ Upper closure of a set:

TSanesTa
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Upper / lower closure

~ The upper closure of an element is the set of elements that dominate it:

la={xe P :a<x}

~ Upper closure is a monotone function:

}
(P,<p) T (UP, D)
a<pbh
Ta21h
A A
.
- B



Functors

~ A functor F : C — D between two categories is defined by two maps:

- amap from objects to objects f, : Ob- — Ob,

- maps from hom-sets to hom-sets f,, : Hom(a; b)) - Hom(fy(a); fo(b))

> (We overload the notation and write F for both functions.)
* These maps need satisfy two conditions:

- Identities map to identities: F(Id,) = Idp,

- Composition is respected:  F(g: h) = F(g): F(h)

C D



Monotone functions as functors

» A functor F : C — D need satisty two conditions:
- Identities map to identities: F(Id,) = Id g,
- Composition is respected: F(gs;h) = F(g); F(h)

. A function f : (P,<p) = (O, <p) is monotone iff

a<pbh

fla) <g f(b)

(P,<p) (0,<p)



Back to the Swiss Mountains

> Berg: objects are (position, velocities) tuples; morphisms are continuous paths.

> BergAma: subcategory of Berg where inclination < 1/2.




Elevation as a functor

> Berg: objects are (position, velocities) tuples; morphisms are continuous paths.

> BergAma: subcategory of Berg where inclination < 1/2.

> There is a functor elevation from Berg to elevation profiles.
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Path planning as the search for a functor

> Berg: objects are (position, velocities) tuples; morphisms are continuous paths.

> BergAma: subcategory of Berg where inclination < 1/2.

> Define a category Plans where objects are areas of the mountain
and morphisms describe visiting order constraints.

Plans BergAma

arrive at the peak

panoramic lake area

v
mountain lodge

>~ A Plan is a morphism in Plans.

~ Planning means finding a functor from Plans to BergAma.



Path planning as the search for a functor

> Berg: objects are (position, velocities) tuples; morphisms are continuous paths.

> BergAma: subcategory of Berg where inclination < 1/2.

> Define a category Plans where objects are areas of the mountains
and morphisms describe order constraints.

planner 1
VI
planner 2
Plans o — BergAma
\\_/l/'
planner 3

> A Plan is a morphism in Plans.
~ Planning means finding a functor from Plans to BergAma.

~ An optimal planner is one that chooses the shortest paths.



A category of categories

> There exists a category of (small) categories called Cat:
- objects are categories
- morphisms are functors

- the identities are identity functors

F G

c_— P —_FE

® ° °
>~ Need to prove that functors compose and that composition is associative:

F:C->D G:D->FE F(d,) = Idp,

F(g:h)=F(g): F(h
F:iG:CoE (gsh) (g)s F(h)















