Session 3 - Specialization

Applied Compositional Thinking for Engineers

Logistics, announcements								
► Tomorrow at 14:00 UTC we will have a talk from Dr. David Spivak, titled: "Applied Category Theory: Towards a science of Interdisciplinarity"								

Identity: Attributes, sameness, constraints

Outline of today's lecture:

- Databases, sets, and functions;
- ► Formal definition of **Set**;
- Formal definition of a subcategory;
- Various examples of subcategories.

Attributes and queries when building a robot

▶ You are building a robot and choose an **electric motor** from a catalogue:

Motor ID	Company	Size [mm ³]	Weight [g]	Max Power [W]	Cost [USD]
1204	SOYO	20 x 20 x 30	60.0	2.34	19.95
1206	SOYO	28 x 28 x 45	140.0	3.00	19.95
1207	SOYO	35 x 35 x 26	130.0	2.07	12.95
2267	SOYO	42 x 42 x 38	285.0	4.76	16.95
2279	Sanyo Denki	42 x 42 x 31.5	165.0	5.40	164.95
1478	SOYO	56.4 x 56.4 x 76	1,000	8.96	49.95
2299	Sanyo Denki	50 x 50 x 16	150.0	5.90	59.95

▶ We can use **sets and functions** to think about attributes:

Consider the table with columns $M \times C \times S \times W \times J \times P$. By using

$$M := \{1204, 1206, 1207, 2267, 2279, 1478, 2299\},\$$

 $C := \{SOYO, Sanyo Denki\},\$

we can define the map Company : $M \rightarrow C$ and e.g. know

$$Company(1204) = SOYO.$$

Attributes and queries when building a robot

▶ You are building a robot and choose an **electric motor** from a catalogue:

Motor ID	Company	Size [mm ³]	Weight [g]	Max Power [W]	Cost [USD]
1204	SOYO	20 x 20 x 30	60.0	2.34	19.95
1206	SOYO	28 x 28 x 45	140.0	3.00	19.95
1207	SOYO	35 x 35 x 26	130.0	2.07	12.95
2267	SOYO	42 x 42 x 38	285.0	4.76	16.95
2279	Sanyo Denki	42 x 42 x 31.5	165.0	5.40	164.95
1478	SOYO	56.4 x 56.4 x 76	1,000	8.96	49.95
2299	Sanyo Denki	50 x 50 x 16	150.0	5.90	59.95

▶ We only want motors from company Sanyo Denki:

Company⁻¹ ({Sanyo Denki}) =
$$\{2279, 2299\} \subset M$$

▶ Consider Price : $M \rightarrow P$, and just prices between 40 USD and 200 USD:

$$Price^{-1}({49.95, 59.95, 164.95}) = {1478, 2299, 2279} \subset M$$

Operations on tables can be composed

▶ We want to know the volume of the components:

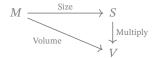
Define $V = \mathbb{R}_{\geq 0}$ and $S = \mathbb{R}^3_{\geq 0}$. Then:

Multiply:
$$S \to V$$

 $\langle l, w, h \rangle \mapsto l \cdot w \cdot h$.

We know Size : $M \to S$ maps motors to sizes; Hence, Volume : $M \to V$ is given by:

Size § Multiply



This is part of a category **Sizes** where:

- ▶ $M, S, V \in Ob_{Sizes}$;
- ▶ Size, Volume, Multiply are morphisms in **Sizes**.

How to include more attributes and functions?

- ▶ What if we want to add new morphisms? All the ones of the catalogue?
- ▶ This would form a category **Database**. What if we want more?

Definition

The category of sets **Set** is defined by:

- 1. Objects: all sets.
- 2. *Morphisms*: given sets *X* and *Y*, $Hom_{Set}(X, Y)$ is the set of all functions from *X* to *Y*.
- Identity morphism: given a set X, its identity morphism id_X is the identity function X → X, id_X(x) = x.
- 4. *Composition operation*: the composition operation is function composition.
- **Exercise:** prove that **Set** is a category.
- ▶ What if I want to include some **some sets/functions** and not all?
- ▶ In **Database**, I need to make sure that:
 - For any function in **Database**, sources and targets are in **Database**;
 - Compositions of functions in **Database** are in **Database**.

How to consider restricted sets of objects/morphisms?

Definition

A subcategory **D** of a category **C** is a category for which:

- 1. All the objects in Ob_D are in Ob_C ;
- 2. For any objects $A, B \in \mathrm{Ob}_{\mathbf{D}}$, $\mathrm{Hom}_{\mathbf{D}}(A, B) \subseteq \mathrm{Hom}_{\mathbf{C}}(A, B)$;
- 3. If $A \in \text{Ob}_{\mathbf{D}}$, then $\text{id}_A \in \text{Hom}_{\mathbf{C}}(A, A)$ is in $\text{Hom}_{\mathbf{D}}(A, A)$;
- 4. If $f: A \to B$ and $g: B \to C$ in **D**, then the composite $f \circ g$ in **C** is in **D** and represents the composite in **D**.

► **FinSet** is a subcategory of **Set**:

- **FinSet** is the category of finite sets and all functions between them.
- While an object $X \in \operatorname{Ob}_{\operatorname{Set}}$ is a set with arbitrary cardinality, $\operatorname{Ob}_{\operatorname{FinSet}}$ only includes sets X' with finitely many elements, i.e., with cardinality $n \in \mathbb{N}$.
- Objects of **FinSet** are in **Set**, but the converse is not true. Furthermore, given $X, Y \in \text{Ob}_{FinSet}$, we know that $X, Y \in \text{Ob}_{Set}$ and $\text{Hom}_{FinSet}(X, Y) = \text{Hom}_{Set}(X, Y)$.

Set is a subcategory of Rel

Definition

Let *X*, *Y* be sets. A relation $R \subseteq X \times Y$ is a **function** $f : X \to Y$ if:

- $\forall \langle x_1, y_1 \rangle, \langle x_2, y_2 \rangle \in R \text{ holds} : \quad x_1 = x_2 \Rightarrow y_1 = y_2.$
- 1. In both **Rel** and **Set** objects are all sets;
- 2. Given $A, B \in Ob_{Set}$, we know that $Hom_{Set}(A, B) \subseteq Hom_{Rel}(A, B)$;
- **3.** For each $A \in \mathrm{Ob}_{\mathbf{Set}}$, the identity relation $\mathrm{id}_A = \{\langle a, a' \rangle \in A \times A \mid a = a' \}$ is the identity function $\mathrm{id}_A : A \to A$;
- **4.** Let $R \subseteq X \times Y$ and $S \subseteq Y \times Z$ be relations which are functions. Then their composition $R \ \S S \subseteq X \times Z$ is again a function:
 - Since *R* is a function, there exists a *y* ∈ *Y* s.t. $\langle x, y \rangle \in R$. Then, since *S* is a function, there exists a *z* ∈ *Z* s.t. $\langle y, z \rangle \in S$. By definition of composition of relations, $\langle x, z \rangle \in R$ \S *S*.
 - Let $\langle x_1, z_1 \rangle$, $\langle x_2, z_2 \rangle \in R$ \S S. Suppose $x_1 = x_2$. There exists $y_1, y_2 \in Y$ s.t. $\langle x_i, y_i \rangle \in R$ and $\langle y_i, z_i \rangle \in S$, $i \in \{1, 2\}$. Since R is a function, $x_1 = x_2$ implies $y_1 = y_2$, which implies $z_1 = z_2$ (because S is a function).

InjSet is a subcategory of Set

Definition

 $\text{Let } X,Y \text{ be sets. A function } f:X \to Y \text{ is } \textit{injective} \text{ if, } \forall x,x' \in X \text{: } f(x) = f(x') \implies x = x'.$

The category **InjSet** has:

- Objects: all sets;
- ► Morphisms: injective functions;
- ► Identity and composition: as in **Set**.
- 1. InjSet has the same objects as Set;
- 2. For any $A, B \in Ob_{InjSet}$, $Hom_{InjSet}(A, B) \subseteq Hom_{Set}(A, B)$;
- 3. Given $A \in \mathrm{Ob}_{\mathrm{InjSet}}$ the identity morphism $\mathrm{id}_A \in \mathrm{Hom}_{\mathrm{Set}}(A,A)$ is the identity in $\mathrm{Hom}_{\mathrm{InjSet}}(A,A)$ (the identity function is injective);
- 4. Given morphisms f: A → B and g: B → C in InjSet, their composition in Set is in InjSet, i.e. the composition of injective functions is injective:

$$(f \circ g)(a) = (f \circ g)(a') \implies f(a) = f(a')$$

 $\implies a = a',$

The category of swiss mountains Berg

Let **Berg** be the category defined as follows:

- ▶ Objects are tuples $\langle p, v \rangle$, where
 - $p \in L$ (locations),
 - $v \in \mathbb{R}^3$ (tangent vector to *L* at *p*, velocities).
- ▶ A morphism $\langle p_1, v_1 \rangle \rightarrow \langle p_2, v_2 \rangle$ is $\langle \gamma, T \rangle$, where
 - $T \in \mathbb{R}_{\geq 0}$ (time),
 - γ : [0, T] → L is a C¹ function with $\dot{\gamma}(0) = v_1$ and $\dot{\gamma}(T) = v_2$ (we take one-sided derivatives at the boundaries).
- For any object $\langle p, v \rangle$, we define its identity morphism $1_{\langle p, v \rangle} = \langle \gamma, 0 \rangle$ formally: its path γ is defined on the closed interval [0, 0], i.e. T = 0 and $\gamma(0) = p$. We declare this path to be C^1 by convention, and declare its derivative at 0 to be v.
- ► Concatenation: given morphisms $\langle \gamma_1, T_1 \rangle$: $\langle p_1, v_1 \rangle \rightarrow \langle p_2, v_2 \rangle$ and $\langle \gamma_2, T_2 \rangle$: $\langle p_2, v_2 \rangle \rightarrow \langle p_3, v_3 \rangle$, their composition is $\langle \gamma, T \rangle$ with $T = T_1 + T_2$ and

$$\gamma(t) = \begin{cases} \gamma_1(t) & 0 \le t \le T_1 \\ \gamma_2(t - T_1) & T_1 \le t \le T_1 + T_2. \end{cases}$$

The category of swiss mountains Berg

Exercise: **Berg** is a category:

The category of swiss mountains **BergAma**?

- ▶ For each path, we can compute the steepness;
- As amateur hikers, we just want to consider paths with a certain maximum inclination, in (-1, 1);
- ▶ By taking the absolute value, we obtain a function:

MaxSteepness :
$$\text{Hom}_{\mathbf{Berg}}(\langle p_1, v_1 \rangle, \langle p_2, v_2 \rangle) \longrightarrow [0, 1).$$

- ▶ In **BergAma**, we just consider paths which have a maximal steepness < 1/2.
- ► Is **BergAma** a subcategory of **Berg**?
 - Ob_{Berg} ⊃ Ob_{BegAma} (steep objects out!);
 - 2. For any $A, B \in Ob_{BergAma}$, we know $Hom_{BergAma} \subseteq Hom_{Berg}$;
 - Given the restriction on objects, the identity morphisms in Berg do not violate the steepness constraint, and they are identity morphisms in BergAma;
 - 4. Given two morphisms f, g which can be composed in BergAma, the maximum steepness of their composition f \(^{\chi}\) g is:

 $\operatorname{MaxSteepness}(f \circ g) = \operatorname{max} \left\{ \operatorname{MaxSteepness}(f), \operatorname{MaxSteepness}(g) \right\} < 1/2.$

The category of swiss mountains **BergLazy**?

- ▶ For each path, we can compute the length in meters;
- As amateur hikers, we just want to consider paths which are shorter than 1 km;
- ► The composition of two morphisms in **BergLazy** of length 0.6 km each result in a 1.2 km long path, hence not in **BergLazy**.

The category **Draw** of drawings

Definition

There exists a category **Draw** in which:

- An object in α ∈ Ob_{Draw} is a black-and-white drawing, that is a function α: ℝ² → Bool.
- 2. A morphism in $\operatorname{Hom}_{\mathbf{Draw}}(\alpha,\beta)$ between two drawings α and β is an invertible map $f:\mathbb{R}^2\to\mathbb{R}^2$ such that $\alpha(x)=\beta(f(x))$.
- 3. The identity function at any object α is the identity map on \mathbb{R}^2 .
- 4. Composition is given by function composition.
- Exercise: Check whether just considering
 - affine invertible transformations,
 - rototranslations,
 - scalings,
 - translations,
 - rotations,

form a subcategory of Draw.