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Isomorphisms and sameness

We want to be able to say when a morphism is “invertible”. Such morphisms
will be called isomorphisms.

Let’s look at the situation with functions. An invertible function is called
“bijective”. Two different formulations of the the definition:

Version 1: “f : X — Yis bijective if, for every y € Y there exists precisely
one x € X such that f(x) = y;

Version 2: “f . X — Yis bijective if there exists a functiong: Y - X
such that f§g=idxand g§ f =idy’.



Definition: Let C be a category, let X and Y be objects.
A morphism f: X — Yis an isomorphism if there exists a morphism
g:Y - Xsuchthat f§g=idxand g$ f = idy.

Remark: The morphism g is called the inverse of f; if such g exists it is
uniquely determined.

Definition: Objects X and Y of C are isomorphic if there exists an
isomorphism X — YorY — X.



Example: These sets are all isomorphic:

{0,1}, {true, false}, {L, T}, {left, right}, {—, +}, {*, T}

f

/\

{0,1} {true, false}
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g

These sets are “interchangeable”. Often we want to keep track of the
isomorphism we use to interchange them !



Example: Currency exchangers

R x {USD} — R x {EUR}

Ea,b .
(x,USD) +— (ax —b,EUR)
Ea,b
USD EUR



Products

The notion of product in category theory generalizes the notion of cartesian
product of sets.

Recall: For sets X and Y:

XXY={x,»|xeX, yeY}

Example:
X =1{1,2,3,4}, Y ={f %

X XY ={1,1),(2, 1), (3, 1), (4 1), (1, %), (2, %), (3, %), (4, %)}



The cartesian product comes with “projection maps” included in the package:

Mo
<
(1, *) (2, %) (3, *) (4, )
W
Y
X
Projection maps:
X — XxY —2— Y
X 4 | (X, y) | >y




Direct sum of vector spaces: Let IV and W be vector spaces. Their direct
sumis Ve W ={v,w)|lveV, we W}

~
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R3 ¢ R3® @ R?

“Min” in an ordered set: Consider (R, <); draw an arrow x; — X, if x; < x,.

2.5 ¢ min{2.5, 3.3} > 3.3




Greatest common divisor: Let m,n € N. Draw an arrow to indicate
“divides”. E.g. since 6 | 12 we would draw 6 — 12.

12 < ged{12,18} > 18

Intersection of subsets: Let S be a set, and X,Y C S subsets. Draw an arrow
to indicate subset inclusion.

E.g. S ={a,b,c,d},X ={a,b,c}, Y ={b,c,d}.

X < XNnY

)-<




What's the general definition !1?7?

Let’s look at an “engineering example” to get some intuition.

Suppose you are at an engineering conference in Switzerland, and there will
be a hike as a group outing...




The organizers have prepared snacks to go. Each participant can choose a
food from

X ={a,b,c} (“apple”, “banana”, “carrot”)
and a drink from

Y ={w,t} (“water”, “tea”)

Let P denote the set of participants.



The distribution/choosing of snacks could be organized like this: each
participant chooses a food, and chooses a drink.




Or, snacks could be prepackaged.
All possible combinations of food and drink choices: X X Y.

Now a participant just makes one choice about which lunch package:




In which sense are the two approaches essentially the same?

Given f and g, we can build ¢ ,:

brg: P— XXY, p+— (f(p),g(p))



In which sense are the two approaches essentially the same?

Given ¢ 4, we can recover f and g:

f=¢f,g377:1 and g=¢f,g37tz-

The diagram is commutative!



This state of affairs actually characterizes what a product is...

=)

We will see: a product is defined “up to isomorphism”....



Definition: Let C be a category, and let X and Y be objects. A product of X
and Y consists of:

» Data:
1. An object Z (this is “the” product)
2. Morphisms 7, : Z—> Xandn, : Z—>Y

» Rule: (“universal property of the product™)
VPEOb, Vf:P—>X,Vg:P—>Y,I¢r,: P— Zst.

=

commutes.



Remarks:
» Products do not always exist! (E.g. number fields.)

» Strictly speaking, a product consists of an object and the two projection
morphisms, but...

» There may be different constituent data that satisfy the definition for
“product of X and Y”, e.g.

X < Z Y and X <¢+——7 —— Y

T Uy) 7T V(%)

One can prove: in such a case, Z ~ Z.
(And in a way compatible with all the projection morphisms).

Hence we speak of “the” product of X and Y, and write “X X Y.



Slogan: the product of X and Y'is the

“most efficient way” to have both X and Y.



Examples for the universal property

Direct sum of vector spaces: Let Vand W be vector spaces. Their direct
sumisVe W ={v,w)|[veV, we W
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“Min” in an ordered set: Consider (R, <); draw an arrow x; — X, if x; < x,.

1.2

|
|
|
|
\l,
2.5 ¢ min{2.5, 3.3} > 3.3




Greatest common divisor: Let m, n € N. Draw an arrow to indicate
“divides”. E.g. since 6 | 12 we draw 6 — 12.

3
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12 < gecd{12,18} =6 >




Intersection of subsets: Let S be a set, and X,Y C S subsets. Draw an arrow
to indicate subset inclusion.

S ={a,b,c,d},X ={a,b,c},Y ={b,c,d}, XNnY ={b,c}.
Consider also W = {c}.

> 4¢----%




Example: Two different representations of “the same” product.

Suppose we are a manufacturer and we want to label our products with
« production date (8-digit code)
« model number (4-digit code)

?mWS
P

DocfeS MOM



Instead of two separate labels, we make one:

202101155900

-V -

dafe m wm ey

Call this the “product code”.

Set Z = set of all product codes.

N ===

3|
first 8 last 4

UP)

D\



The set Z, together with the maps

73| %)
first 8 last 4

will satisfy the definition of “product of X and Y”

even though Z is not precisely the cartesian product X X Y.

Elements of Z are 12 digit codes, while elements of X X Y are pairs (x, y)
where x is a 8-digit code and y is a 4-digit code.



But: Z and X X Y are both “the” product of X and Y, so they are isomorphic. In
fact, isomorphic in a unique way such that this diagram commutes:

V4

|
first 8 : last 4
¢ﬁrst 8,last 4

1

\l,

< XXY > Y
Z — XXY

¢ﬁrst 8,last 4 .
202101155900 +—— (20210115, 5900)









