Session 5 - Choosing: Coproducts

Applied Compositional Thinking for Engineers

Logistics, announcements

Week plan:

- ▶ Monday, January 18th at 18:00 UTC: Session 5 (Combining);
- ▶ Wednesday, January 20th at 14:00 UTC: Session 6 (Trade-offs);
- ▶ Thursday, January 21st at 18:00 UTC: Guest Lecture 2 (Dr. Brendan Fong);
- ▶ Friday, January 22nd at 14:00 UTC: Session 7 (Life is hard);
- ▶ **Saturday, January 23rd**: Office/social hours:
 - 09:00-10:00 UTC;
 - 18:00-19:00 UTC:
- ▶ **Sunday, January 24th**: Office hour:
 - 14:00-15:00 UTC.

Choosing: coproducts

Outline of today's lecture:

- ► Intuition behind coproducts;
- ► Formal definition of coproduct;
- ▶ Various examples of coproducts.

Intuition behind coproducts

- Last week you saw **products**;
- ► Today, we see **coproducts**;
- ► Consider a vending machine:

▶ We want to have a notion of:

Intuition behind coproducts

- ▶ The notion of *coproduct* in category theory generalizes the notion of *disjoint* union of sets.
- \triangleright Given two sets A, B, their disjoint union is:

$$A+B=\{\langle 1,a\rangle\mid a\in A\}\cup \{\langle 2,b\rangle\mid b\in B\}.$$

▶ Consider $\{\star, \diamond\}$ and $\{\star, \dagger\}$:

Refresher: Products

▶ Recall: We have seen the **product** $A \times B$ between objects A and B:

Example: greatest common divisor

- ▶ Let $A, B \in \mathbb{N}$. Draw an arrow between A and B if A divides B, e.g. $6 \to 12$.
- Product (greatest common divisor):

► Coproduct (least common multiple):

Coproduct, intuitively

- ▶ In the coproduct, we reverse the arrows;
- ▶ Projections become injections/inclusions;
- ▶ Product:

► Coproduct:

Formal definition of coproduct

Definition

Let **C** be a category and let $A, B \in Ob_{\mathbb{C}}$. The *coproduct* of A and B is:

- ▶ an object $A + B \in Ob_{\mathbb{C}}$, together with
- two inclusion morphisms $\iota_A: A \to A + B$ and $\iota_B: B \to A + B$,

such that, given any $P \in \mathrm{Ob_C}$ and morphisms $f: A \to P, g: B \to P$, there exists a *unique* morphism $(f+g): A+B \to P$ such that

$$f = \iota_A \circ (f + g)$$
 and $g = \iota_B \circ (f + g)$.

Diagrammatically:

► Let's consider two battery producers *A* and *B*, each producing specific technologies;

▶ Let's consider two battery producers *A* and *B*, each producing specific technologies;

▶ The universal property of coproducts says that there is a **unique** function

$$f + g : A + B \rightarrow P$$

s.t.

$$\iota_A \circ (f + g) = f$$
 and $\iota_B \circ (f + g) = g$

▶ Any $x \in A + B$ is either "from A or from B:

either
$$\exists a \in A : x = \iota_A(a)$$
 or $\exists b \in B : x = \iota_B(b)$.

▶ By the diagram

we must have

$$(f+g)(x) = \begin{cases} f(x) & \text{if } x = \iota_A(a), \quad a \in A, \\ g(x) & \text{if } x = \iota_B(b), \quad b \in B. \end{cases}$$

Coproducts in **Set** and **FinSet**

- ▶ Coproducts here are generalization of **disjoint unions**;
- ▶ Given $A, B \in Ob_{Set}$, A + B is the disjoint union;
- ▶ Injections ι_A , ι_B are **inclusion** maps:

$$\iota_A: A \to A + B$$

 $\iota_B: B \to A + B$

 \blacktriangleright f + g is given by:

$$(f+g)(x) = \begin{cases} f(x) & \text{if } x = \iota_A(a), \quad a \in A, \\ g(x) & \text{if } x = \iota_B(b), \quad b \in B. \end{cases}$$

Why not the union in **Set**?

- ▶ In general, if $A \cap B \neq \emptyset$, $f + g : A \cup B \rightarrow P$ cannot exist!
- ▶ All elements $x \in A \cap B$ would be sent to f(x) and g(x) for commutativity.

Product and coproduct in Rel

- ▶ Given $X, Y \in Ob_{Rel}$, their coproduct is the **disjoint union** X + Y;
- ► This is equipped with injections:

$$\iota_X : X \to X + Y$$
 $\iota_Y : Y \to X + Y$

► These induce relations:

$$R_{t_X} \subseteq X \times (X+Y)$$

 $R_{t_Y} \subseteq Y \times (X+Y)$.

▶ Note that in **Rel** products and coproducts are closely related: both involve disjoint union of sets.

Join in an ordered set

- ▶ Consider $\langle \mathbb{R}, \leq \rangle$ and draw $x_1 \to x_2$ if $x_1 \leq x_2$.
- ▶ The coproduct of x_1 and x_2 is an element z such that:
 - $x_1 \le z;$
 - $-x_2 \leq z;$
 - For all $x \in \mathbb{R}$ with $x_1 \le x$ and $x_2 \le x$, we have $z \le x$.
- ▶ Coproduct is a "least element above both x_1 and x_2 " (also called *join*).
- ▶ Coproduct of $x_1, x_2 \in \mathbb{R}$ is $\max\{x_1, x_2\}$.

Union of subsets

Let *S* be a set, and $X, Y \subseteq S$ subsets. We draw an arrow to indicate subset inclusion.

Direct sum of vector spaces is the product in **Vect**

- ▶ There is a category **Vect**, where:
 - Objects: vector spaces;
 - Morphisms: linear maps;
 - Identity morphisms: identity maps;
- Composition: composition of linear maps;
- ▶ Recall: given *V* and *W* vector spaces, their **direct sum** is

$$V \oplus W = \{\langle v, w \rangle \mid v \in V, w \in W\}.$$

► Given $\langle v_1, w_1 \rangle$, $\langle v_2, w_2 \rangle \in V \oplus W$, we have:

$$\langle v_1, w_1 \rangle + \langle v_2, w_2 \rangle \coloneqq \langle v_1 + v_2, w_1 + w_2 \rangle$$

▶ We showed this is the **product**, but it is also the **coproduct**!

Direct sum of vector spaces is the coproduct in Vect

► Injections are:

$$\iota_{V}: V \to V \oplus W \qquad \iota_{W}: W \to V \oplus W$$
$$\upsilon \mapsto \langle \upsilon, 0_{W} \rangle \qquad \qquad w \mapsto \langle 0_{V}, w \rangle$$

- Let's take any linear maps $S: V \to U, T: W \to U$;
- ▶ We need a **unique** $h: V \oplus W \to U$ s.t. $S = \iota_V \, \mathring{\S} \, h$ and $T = \iota_W \, \mathring{\S} \, g$;
- ▶ For $\langle v, w \rangle \in V \oplus W$, we can write:

$$\begin{split} h(\langle v, w \rangle) &= h(\langle v, 0_W \rangle + \langle 0_V, w \rangle) \\ &= h(\iota_V(v) + \iota_W(w)) \\ &= h(\iota_V(v)) + h(\iota_W(v)) \\ &= (\iota_V \circ h)(v) + (\iota_W \circ h)(w) \\ &\stackrel{!}{=} Sv + Tw \end{split}$$

► Hence:

$$h: V \oplus W \to U$$

 $\langle v, w \rangle \mapsto Sv + Tw$

Category of graphs

- One can define the category of graphs Grph;
- ▶ Objects are graphs $G = \langle V, A, s, t \rangle$, where
 - *V* is a set of **vertices**;
 - A is a set of arrows;
 - s: A → V is a **source** function;
 - $t: A \rightarrow V$ is a **target** function.

Category of graphs

- ▶ One can define the category of graphs **Grph**;
- ▶ Objects are graphs $G = \langle V, A, s, t \rangle$, where
 - V is a set of vertices;
 - *A* is a set of **arrows**;
 - $s: A \rightarrow V$ is a **source** function;
 - $t: A \to V$ is a **target** function.
- Morphisms are graph homomorphisms;
- ▶ Given graphs $G = \langle V, A, s, t \rangle$, $G' = \langle V', A', s', t' \rangle$, a **graph homomorphism** $f : G \to G'$ is given by $f_0 : V \to V'$ and $f_1 : A \to A'$, such that:

$$\begin{array}{cccc} A & \xrightarrow{f_1} & A' & & A & \xrightarrow{f_1} & A' \\ \downarrow^s & & \downarrow^{s'} & & \downarrow^t & \downarrow^{t'} \\ V & \xrightarrow{f_0} & V' & & V & \xrightarrow{f_0} & V' \end{array}$$

Category of graphs

- ▶ One can define the category of graphs **Grph**;
- ▶ Objects are graphs $G = \langle V, A, s, t \rangle$, where
 - V is a set of vertices;
 - A is a set of **arrows**;
 - $s: A \rightarrow V$ is a **source** function;
 - $t: A \rightarrow V$ is a **target** function.
- Morphisms are graph homomorphisms;
- ▶ Given graphs $G = \langle V, A, s, t \rangle$, $G' = \langle V', A', s', t' \rangle$, a **graph homomorphism** $f : G \to G'$ is given by $f_0 : V \to V'$ and $f_1 : A \to A'$, such that:

$$\begin{array}{cccc}
A & \xrightarrow{f_1} & A' & & A & \xrightarrow{f_1} & A' \\
\downarrow s & & \downarrow s' & & \downarrow t & \downarrow t' \\
V & \xrightarrow{f_0} & V' & & V & \xrightarrow{f_0} & V'
\end{array}$$

"Arrows are bound to their vertices"

Coproduct in **Grph**

Coproduct in **Grph**

► Consider two graphs:

▶ Their co-product is:

Coproduct in Grph

▶ Given $G = \langle V, A, s, t \rangle$ and $G' = \langle V', A', s', t' \rangle$, their coproduct is a graph

$$G+G'=\langle V+V',A+A',s+s',t+t'\rangle;$$

- \blacktriangleright An arrow connects v_1 to v_2 if
 - $v_1, v_2 \in V \text{ or } v_1, v_2 \in V'$, and
 - an arrow exists in *G* or *G*′;
- ▶ Given $s: A \to V$ and $s': A' \to V'$, we have (similar for t + t'):

$$\begin{split} s+s':A+A'\to V+V'\\ x\mapsto \begin{cases} s(x) & \text{if } x\in A\\ s'(x) & \text{if } x\in A'. \end{cases} \end{split}$$