Applied Compositional Thinking for Engineers

Session 8

Design

What is design?

~ We take a broad view of what design is, the same as Herbert Simon:

Engineers are not the only professional designers.

Everyone designs who devises courses of action aimed at
changing existing situations into preferred ones.

The intellectual activity that produces material artifacts is no different
fundamentally from the one that prescribes remedies for a sick patient
or the one that devises a new sales plan for a company or a social
welfare policy for a state. Design, so construed, is the core of all
professional training; it is the principal mark that distinguishes the
professions from the sciences. Schools of engineering, as well as schools
of architecture, business, education, law, and medicine, are all
centrally concerned with the process of design.

Herbert Simon, The sciences of the artificial, Chapter 5

An abstract view of design problems

> Across fields, design or synthesis problems are defined with 3 spaces:
- : the options we can choose from:;
- functionality space: what we need to provide/achieve;

- requirements/costs space: the resources we need to have available;

‘ -« > ‘
Junctionality requirements,
(provided) resources

required

desired behavior

costs
specifications
dependencies
objectives
“function” “function”

“conclusions” “assumptions”

An abstract view of design problems

> Across fields, design or synthesis problems are defined with 3 spaces:
- : the options we can choose from:;
- functionality space: what we need to provide/achieve;

- requirements/costs space: the resources we need to have available;

‘ <+ > ‘
to maximize to minimize
<9:‘ 9 SS’ > <9Q7 Sﬂ%>

any partially ordered set any partially ordered set

A symmetric theory

‘4* »‘

to maximize . to minimize

Form ever follows function

Whether it be the sweeping eagle in his flight, or the open apple-blossom, the toiling work-
horse, the blithe swan, the branching oak, the winding stream at its base, the drifting
clouds, over all the coursing sun, form ever follows function, and this is the law.
Where function does not change, form does not change. The granite rocks, the ever-
brooding hills, remain for ages; the lightning lives, comes into shape, and dies, in a
twinkling.

It is the pervading law of all things organic and inorganic, of all things physical and
metaphysical, of all things human and all things superhuman, of all true manifestations
of the head, of the heart, of the soul, that the life is recognizable in its expression, that
form ever follows function. This is the law.

Louis Sullivan

“function” conflates two dual aspects

functionality requirements

function

Function beyond the strictly technical meaning

- Law of successful products: at equilibrium, in an efficient and free market, no product
completely dominates another by both functionality and costs.
(Otherwise, the dominated product wouldn’t sell.)

“watchiness” price
tells time, a lot
multiple alarms
, signaling much less
tells the time !

| I am somebody

who can afford

? a Patek Philippe

and I chose to
buy one.

Transparent vs opaque models

> For the purpose of design, we need to know how something is is done, not just that it is
possible to do something.

» We need to know what are the implementation(s), if any, that relate functionality and costs.

‘F ‘ :‘

> Algorithmically, it will also be useful to consider a direct feasibility relation from
functionality to costs.

Engineering is constructive

> For the purpose of design, we need to know how something is is done, not just that it is
possible to do something: engineering is constructive.

“I care about the proof™”

conclusions assumptions

‘4* > ‘
b @ TN >

“I see the theorem as a black box”

conclusions theorem statement assumptions
O O

Engineering is constructive

> For the purpose of design, we need to know how something is is done, not just that it is
possible to do something: engineering is constructive.

>~ We need to know what are the implementation(s), if any, that relate functionality and costs.

‘F ‘ :‘

> For the algorithmic solution of co-design problem, it will also be useful to consider a
direct feasibility relation from functionality to costs.

feasibility

>~ We will call these boolean profunctors.

Design problem with implementation

> A design problem with implementation (DPI) is defined as a tuple

(F, R, I,provides, requires)

/ provides] requires r
' < @ e —————— >‘

Graphical notation for DPIs

> We use this graphical notation:
- functionality: green continuous wires on the left

- requirements: dashed red wires on the right.

 choice of
(F.<.) capacity [J| —9 battery [*" mass [g |
—F/ maxcurrent [A] —d F jee cost [$]
_ IJ
\ 4
implementations

e -
P = ".“;1'\':17‘,,';- > St w.w.'i“,
R S e B s g - = e e
e s EFTG g = =
§y HE S 185 \p s o
Vgeeeald mgEEGel et ki
g iRl g teEEE Vigeal
et 2 A S, 9 ‘
A% ’ .
s -
AAA Batleries OV Batteries D Balteries C Batteries

AA Eatteries

Mechanical Engineering

rocking
motion

output torque —«

output speed ——eo

component
shapes

4 N\
crank-rocker

()

gearbox

I — bin packing

rotational
motion

----- input torque

----- input speed

enclosure
shape

Inference

[progressive

: stereo
resolution ——e

2 seconds:

Alex Locher, Michal Perdoch and Luc Van Gool. Progressive prioritized multi-view stereo. CVPR 2016.

4 .)
particle filters

accuracy —e

e # Of particles
robustness —e

From DPI to feasibility relation

» From a DPI we can find a monotone function

r: F' X R —p, Bool

defined as follows:

(fOp,r) — diel : (f <y provides(i)) A (requires(i) <z r)

~ Alternative: first define the set of all feasible implementations:

(fOp,r) = {iel :(f Zpprovides(i)) A (requires(i) <p r)}

then ask if non empty.

Boolean profunctors

~ We call these boolean profunctors or design problems
r: F' X R —p, Bool
> There is a category of these, called Feas or DP.

> We use these slashed arrows:

r . F+ R

Composition semantics

~ Composition in DP reflects an intuitive notion of composition in engineering:

r 2 4 2
chassis , , motor
loe..... required provided | -
* torque [Nm] torque [Nm] =
- y . J
composition
é) 4)
chassis motor
. - @_‘ ’; 'I .’:”i#‘
\. J \. ‘ J

resources required < functionality provided
by the first system — by the second system

Defining composition for boolean profunctors

> Definition of composition:

Defining composition for boolean profunctors

> Definition of composition:

f - AP x B — Pos Bool g . B°P x C —Pos Bool

(f; g): A°? x C —pos Bool

(@, c) = \/ f(a®,b1) A g(bSP,c)

b1 <b2

~ Identities: Idy: A x A —p,s Bool

(@1°P,az2) — (a1 <a az)

Boolean Profunctors as generalization of relations

> A relation is a map

r: AX B —g, Bool

> A boolean profunctor is a map

f:A"xB —pos BOOI

v

Boolean profunctors are generalization of relations.

> Are profunctors special relations, or are relations special profunctors?
> Which one is true?

- DP is a subcategory of Rel.

- Rel is a subcategory of DP.

Profunctors

>~ Profunctors are functors of type
P AOP X B —)Cat SEt

where A, B are generic categories.

> You can see profunctors as a general case of Boolean profunctors:

- Think of Bool as the subcategory of Set

consisting of the empty set and a singleton. T ®
N
- In the other direction: consider the functor —

nonempty: Set = Bool

\1¢

The Hom Profunctor

>~ Profunctors are functors of type
P AOP X B —)Cat SEt

where A, B are generic categories.

>~ Claim: Hom can be seen as a profunctor:

Homg : C' X C =y Set

>~ We are going to check this: technical but insighttul.

Defining the Hom Profunctor

> Let’s define the profunctor

Home : C' X C =y Set
- It maps pairs of objects to their Hom-sets :
(x",y) = Home(x; y)

- What does it do to a morphism?

Defining the Hom Profunctor

> Let’s define the profunctor

Home : C' X C =y Set
- It maps pairs of objects to their Hom-sets :
(x",y) = Home(x; y)

- What does it do to a morphism?

morphism in C" xC morphism in Set
f = (aip,az) F—— Hom¢ f : Home(x; y) = Home(a; b)
z () §25ay)
C
a x y b a x §. y b
o 0 >0 ° 22 >0 — %1 o,

Checking that Hom is a profunctor

> Let’s check the property:

F(fs58)=F(f)s F(g)
£ = <a<1>p’a2> Homg. f = _I ”
e (5”5 tomee — 7 _: /32
f58=(a) 56 03 po) Homc(f § 8) —ﬂlgal—g — a § P
T
Homc f 8 Homc g ﬂl al _:_ az ﬂz

fsg

figsh)=(f38)sh

Associativity

b1

b —

R

a5 Py

(P15 ay)x;5(ay 5 Br) = frs(ags x5 a);5 P

DPI as profunctors?

» From a DPI we can find a monotone function

r: F' xR —pos LOWErSet(/)

defined as follows:

(fOP,r) — {ie [l . (f Zpprovides(i)) A (requires(i) <p 1)}

>~ Can we make this into a profunctor?

Coming up: Co-design

> So far, we have only composed morphisms in “series”.

> In co-design we ask how to optimize over very complex graphs:

cycle in the co-design graph

extra
payload
O

velocity

design
problem

Coming up: Co-design

> So far, we have only composed morphisms in “series”.

> To give a categorical semantics to complex co-design diagrams, we will define:

- monoidal categories (parallelism)

- traced monoidal categories (feedback)

- locally posetal / lattical categories (and, or)

“series”

o}

“choose between
two options”
a)
~_F
— 0 |@e-
A
— v ... Y

——.|

“parallel”

-

-

~

“feedback”
|
e @i
B W—)

“convince two experts”

