
Applied Compositional Thinking for Engineers (ACT4E)

Session 5 - Choosing

Questions & Answers

Q: First you mentioned unions, and then went to how CT generalizes disjoint unions. Does category
theory also have a way to generalize union, not just disjoint union?
DS: Why yes! In the category of subsets of a set X, with morphisms being inclusions, the coproduct is the
regular old union. The disjoint union is the coproduct in the category Set of sets and functions.

Q: Should the arrows in the battery example from A/B to A+B be reversed to be consistent with the
general diagram?
DS: Here’s the right form, whatever was said:

NM: No, the direction of the arrows was correct, one thing to keep in mind is that the arrows between A/B and
A+B (or AxB) should be the same direction as between A/B and the extra object C (in this case the set of
prices). A very crude way of thinking about it is that the existence of a product/co-product is saying that if it kind
of looks like C could replace A+B (or AxB) then we can instead pass through A+B (or AxB) when moving
between A/B and C.
To try to give an intuitive meaning of this, I would say that the product/co-product contains the smallest/largest
amount of stuff required.

Q. In the example of the category whose morphisms are ≤ and objects are sets, what are the i_a and i_b
morphisms (the injections)?

NM: The morphisms/injections would have to still be a ≤, though what exactly do you mean by ≤, do you mean
set inclusions?
OP: Yes, maybe you can clarify: in that example that Giole just showed, are the objects of the category sets, in
which case they correspond essentially to tuples in the relation, or propositional statements? or are they sets of
sets so that the morphism ≤ is a relation?
NM: This is the category of ordered sets? Or the union of subsets?
OP: I don’t know. What exactly is the category in Gioele’s example?
NM: Do you have the page of the slides that it was on?
OP: Slide 21/30.
NM: So union of subsets, in this case the objects are subsets of a fixed set X. Then the morphisms are set
inclusions
OP: I see. So in this kind of category, the morphisms are really trivial things, because (in set theoretic terms)
they are just individual tuples, right?
NM: I guess the morphisms can be as trivial or complicated as you like, I’m not familiar with formal set theory
OP: Thanks! I think I get it.

JL: I’m not sure if I’m understanding which example is meant, but i think its the one where we are looking at the
real numbers and the relation ≤. Here the objects of the category in question are the elements of the set of real
numbers. That is, objects are numbers. Does that help?
(So here objects are real numbers, and morphisms are the relationships of less-than-or-equal between them)
OP. Sorry for the confusion. Was referring to subset not LTE...

Q. What are good examples of monoid objects in monoidal categories where the monoidal product is a
categorical coproduct? In (Set,+) it seems a monoid is just a pair of functions (not interesting). Are
there any less trivial examples?

NM: If the question is about monoidal categories that use a co-product structure as the monoidal product then
this is called a co-cartisian monoidal category (https://en.wikipedia.org/wiki/Cartesian_monoidal_category)
which includes the categories of: abelian groups, vector spaces, and of R-modules. What you might be picking
up on is that if this category is also closed (every Hom-set is itself an object) then the category is equivalent to
the terminal category and therefore non-interesting
(https://ncatlab.org/nlab/show/cocartesian+closed+category)

NM: For monoidal objects, any object of the co-cartisian monoidal category would be an example (if you can
find valid morphisms for multiplication and units)
OP: Yepp! Correct! My question was wrong :) What I meant to say was what interesting comonoid objects there
are. A comonoid object in (Set,+) is just a pair of functions (boring). The nlab link above was a good answer.
Thanks
NM: I think you may have mixed up terms here, for a monoidal category you can have both monoids, and
comonoids (Off the top of my head I think algebras and co-algebras are examples of monoidal objects and
comonoidal objects in the monoidal category of vector spaces)
Other: There are “special” monoidal categories, where the monoids and comonoids behave trivially. So in a
cartesian monoidal category (where the “tensor product” is the cartesian product) the comonoid objects are
unique and trivial (the diagonal copy) and the monoid objects are the ordinary monoids. In a cocartesian
monoidal category (where the “tensor product” is the coproduct) the monoid objects are unique and trivial
(forget the index) and the comonoid objects are a partition of an object in 2 parts

https://en.wikipedia.org/wiki/Cartesian_monoidal_category
https://ncatlab.org/nlab/show/cocartesian+closed+category

In Sets A+A={<a,1>|a in A} U {<a,2>|a in A}
Each element of A occurs 2 times in A+A, and we keep track of them by indexing them with a parameter 1 or 2.
The only way to build a monoid m:A+A->A is to map an element of A+A to its obvious element of A by forgeting
the index.
The comonoids are the maps d:A->A+A that make an arbitrary choice whether a in A shall get the index 1 or
get the index 2. So the comonoids are a the ways to partition A into A_1 and A_2

Q: What are some examples of where someone would use coproducts of graphs? It looks reminiscent
of steps in Feynman diagrams
A forest is a coproduct of trees right?

Q: Can you give an example (of a coproduct) in a category where objects are not set-like, i.e., they
don’t have elements?

JL: there were several examples of this sort in the lecture:
- real numbers as objects, and “less-than-or-equal” relations as morphisms
- natural numbers as objects and “divides” relationships as morphisms
OR: thank you!

Q: In programming we have product types and sum types (i.e. struct and union in C), I guess these can
be modeled with products and coproducts?

http://brendanfong.com/programmingcats.html
https://bartoszmilewski.com/2014/10/28/category-theory-for-programmers-the-preface/

http://brendanfong.com/programmingcats.html
https://bartoszmilewski.com/2014/10/28/category-theory-for-programmers-the-preface/

