Session 11 - Feedback: Duals and Trace
Applied Compositional Thinking for Engineers



Plan

» Duals in symmetric monoidal categories
— Tensor product and duals in linear algebra
— String diagrams
— Dual objects in a SMC
— Other examples

» Traces and feedback
— Trace in linear algebra
— Tracein a SMC
— Trace, generalized
— Trace, axiomatized



Tensor and duals in linear algebra

We’ll look in detail at C = FinVectg.

One possible symmetric monoidal structure:
« monoidal product @ = tensor product
« monoidal unit I = the vector space R

Recall...

@ : FinVecty X FinVecty — FinVecty
VI — VRW

(f,89— f®g

e | € ObFinVectR isI=R



...plus coherence data (and coherence conditions):
c (URV)QWxUR(VRW)
e IR V2V VRI

e VRWxWRV

Strictification theorem: “we can think about symmetric monoidal
categories as if they were strict”



» Example: V = R34, W = R3, VW =2

~- dim(V@W)=dimV - -dimW =6.SoV Q W ~ R,
- If{ay, a,} basis of V and {b,, b,, b;} basis of W, we can take

{a; ® b;,a, ® by,a; @ by,a, @ by,a; @ by, a, @ bs}

as basis of R? ® R3.

1 0 0
1 0 Y
- a1= ,a2= ) b1= 0 ab2= 1 ab3= 01, a1®b2 =

oS o O




Generally and formally: V' @ W can be defined via

Generators:
LR w velV,weWw

(Take formal linear combinations: A4,v; @ w; + ... + 4,0, Qw, 4; € R)

Relations:

Av@w) =) Qw=vQ (lw)

LW+ Quw=vQuw+v Quw

v (w+w)=vuw+ovuw’



There are different ways to formally define the tensor product V@ W, but...

Universal property

VW
\
® X U
4 ////El!fB
Ve

{Bilinear maps V X W — U} ~ {Linear maps V ® W — U}

/(v ® w) = B(v,w)
[B(Av; @w + v, @ w,) = Afp(v; @ wy) + fp(L, @ wy)



Duals in FinVectg: V* = Hom(V, R).
Given basis ey, ..., e,, of V, the dual basis e, ..., e;; of V* is characterized by

. 1 ifi=j
e; (ej) =
0 else

Example:

el = 0 = R3, 62 =11 S R3, e; = lO 1 O] € (RS)*

33(31)=l0 1 0] of=0, e§(32)=l0 1 0] 1l =1




Fact: V* ® V ~ Hom(V,V) (and ~V ® V*):

V'QV — Hom(V, V)

% . %
& Qe > Al xe(x)e

Example:
o]
e§=l0 1 0], e; =10
_1_
o] N _

es(er)es =10, ex(e)es=|0], e3(es)es=|0

U cslmvan
, -
‘e —> 1- |- <
0 0 0
Az>=10 0 O
0 1 O]




Hom(V,V)~V*®V (and 2V Q V*):

Hom(V,V) — V'V

where q; ; = ¢/ (Aeg;)
%
A — E i, j ai’j ej X €;



Hom(V,V)~V*®V (and 2V Q V*):

Hom(V,V) — V'V

where q; ; = ¢/ (Aeg;)

*
A — Zi,j Cli’j ej X €;

Trace: Tr : Hom(V,V) — R, A+ Tr(A)

Evaluation: ¢, : V"V — R, [®v+— (V)



Evaluation: e V'V —R

Coevaluation: 7, :R—V QV*

R — VeV
v -
A — A2.eQ¢

(R — V®V*~Hom(V,V)

A




String diagrams

Series composition:

C‘.[‘\/\QM aﬁ;X——»)T f}oﬂ:)(’_’é’%
X 2
S TR S E2 e Fl
el
Parallel composition:
C ive a(!X__,_,-)Ll/ f@}'}(@%—?g@h/
e £ SN

X S
ot gz — vy _éiL
= W

g



Unit object: 7[ T — X E(j_)ﬁ

IQC%&

5:)/—?1 X 3]
o ho ¥ O£ %j@@
Symmetry: \/



New: we’ll add a “flow direction” to our strings/wires, in addition to the
directionality of reading from left to right and top to bottom.

Meaning:

—\/—ﬁww/“ mean s ‘7f WL_> W

P —

N2

—z&x @—\L—Y weams 9 X

/{/éﬁﬂ{ J//’r\l/(/%f'd”’l "U[%f” 7/3 Mculcﬁ‘dgm (dwz/tosrﬁzzw,'



New: we add two new symbols, for coevalution and evaluation.

\V




Then we can do things like this:

How to read this?




Exercise: show that this composition is precisely f* : U* — V*.

/(41/3((% ) sz@?{@ e J LR

—_—
pa—

90%'

Definition: \Lé_,gi = j?;(: Y — X*



We can do calculations and proofs via deforming string diagrams, following
certain rules.

Is this black magic ?
How to do we know that everything is rigorous?

Joyal and Street, in the 90’s, put string diagrams on a rigorous footing...



Example of some basic rules/moves: Zig-zag identities (aka “snake
equations™)

-
& B ) \!’
\J

‘ Y “

. |

\ N l

( ]

' l

oy Uy
® ®
iy €y

77V® idyg ldV® €y = ldV



Using ny, €, and the symmetry operation, we also get:



Example proof using string diagrams:
Lemma: a‘\w %1 W=\

Proof:




In a similar way, one can prove for example:




Dual objects in a SMC

Definition: Let C be a (strict) symmetric monoidal category, and X € Obc. A
right dual of X is defined by the following data, satisfying the following
conditions.

Data:
« An object X* of C
« Amorphism7ny : I - X ® X7, called coevaluation -
« A morphismey : X* ® X — I, called evaluation )

Conditions:
. 77X®1dX31dX®€X=1dX 5— =
. ldX* ® €x g Nx ® ldX* = ldX 2 -




In a symmetric monoidal category:
» Left duals are defined analogously.

» If an object X admits a right dual, then this can be made to be a left dual,
too. So we can just speak of duals.

» If an object admits right/left duals, it is called dualizable.

» A symmetric monoidal category is called compact closed if every object is
dualizable.



In a symmetric monoidal category:

Proposition: Given an object X, if Yand Y’ are both (right) duals to X, then
Y~Y'.

Example: C = FinVect. Both Vand V** are (right) duals to V*.

Proposition: Consider the SMC C = Vect,. An object V of C is dualizable if and only
if Vis finite-dimensional.

Remark: “dual” in the SMC sense # “dual” in linear algebra sense

Intuition: “dualizable” = “finite” in some sense



Other examples

Example: (Rel, %, {x}, o) is compact closed.
Given a set X, its dual is X* = X.

Nx - {x} — XXX, nx={{xx)e{xxXxX)|x=x"}

ex 1 XXX — {x}, ex ={{(x,X),%) € (X XX)X{#}|x=x}



Example: Boolean profunctors form a compact closed category, with ® = X
and I = {x}.

Given a poset X = (X, <), its dual is the opposite poset X°P = ((X, <))°P.
Nx - {x} > X X X°P .

{%}°P X (X X X°P) — Bool, (x,x,x') = T iff x >x x’

ex : XP XX — {x}:

(X°P x X)°P x {x} —> Bool, (x,x',*) = Tiff x >x x’



Trace in linear algebra

Given f : V — V, how can we compute its trace in a CT way?

&
‘7\/ \l . \/ —L> R

>\\__7 >\E ¢.® f-f — )\Z%Q@CZ‘ > >\z:\ e?(#@() = X‘\r("')

jﬁlj R —— R
)\ —> S.Tr(:e)



Trace in a SMC

Let C be a SMC, X a dualizable object, and f : X — X an endomorphism. The
trace of f is the composite

®id y=
I xeox ' xex L x x5




Proposition: Let M, N be dualizable objects of a SMC C. If f : M — N and
g : N — M, thenTr(f §g) = Tr(g s f).

Mm]\]*

K. Ponto, M. Shulman, Traces in monoidal categories, Expo. Math. 32 (2014)



Example: Let C = Rel, with cartesian product X as monoidal product and
I = {*}. The dual of a set X is the set X again.

Let R : X — X be a relation. The trace Tr(R) is a relation {*} — {x}, so it is
either {(x, %)} or @. |

|
)
PR
g B, X T i
X

J—%X

x%,%) if 3(x,y) ER : x=
TH(R) = (%, *) (x,y) y
%) else



Example: Let C = DP. Cartesian product X is monoidal product, I = {x}.
The dual X™ of a poset X is its opposite poset.

Let ¢ : X — X be a boolean profuntor. Recall that ¢~1(T) is the “feasible
subset” of X X X.

The trace Tr(¢) is a boolean profunctor {x} — {x}, so it corresponds to either
{(x, %)} or @.

(e, %) if 3Y) 1 ¢, y) =T A x>y
%) else

Tr(¢) =




Trace, generalized

Definition: Let U be a dualizable object in a SMC C. Given a morphism in C
f:XQU —YQU
its trace over U is the morphism
Trxy(f) : X — Y

given by the composite

idx® ®idy+ idy®oy,u+ idy®
Xy oo vyeueur el vyeureu Yy
\X\ Y
7
NERT

—*




Example:
DI‘CSA J:-u

Matiow [s]

Diesel
Car Eleckicly (wl

~

Eleckri &grz] (w]

X’Mo{fsv\ ¢;XXM__7 YXL(
Y = Diesk
Vk’ E(QCLV\\C:\J(:] Bosleaw /ﬂfundvr

//D,'(;/ .

. XXU—YXU
Tr(p)"H(T) ={(x, ) € X XY | Hwu') : p({{x,u),y,u)) =T A u2u'}






Now we can interpret such diagrams:

4 V P operational cost)
A —————d L mmemmmeeemes (CHF/km] _
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Trace, axiomatized

Definition: A traced symmetric monoidal category is a SMC C together
with a family of functions

Tr{y : Homc(X ® U, Y ® U) — Hom¢(X,Y),  f > Try y(f)

satisfying a number of conditions (which we omit here).

We also say: C is equipped with a trace structure.

W @ Z W: W @ Z Z
U U X X Y Y _ X: X b: 3
9® Trx v (f) = Tryygx, 20y (9 ® f) vl f (o - vl f [t

C.f. Wikipedia page for “traced monoidal category” to see the conditions + diagrams
illustrating them.



Example: (Rel, +, @) is symmetric monoidal but not compact closed. There is
however the following trace structure. Given arelationR : X+ U — Y + U,

Ty y(R) : X — Y

is the relation

{x,y)eXxY| dn>0, Juy,..,u, €U : xRu;Ru,..u,Ry}







