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Design queries

> Two basic design queries are:
- FixFunMinReq: Fixed a lower bound on functionality, minimize the resources.

- FixReqMaxFun: Fixed an upper bound on the resource, maximize the functionality

Given the functionality to be provided,
what are the minimal resources required?
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Given the resources that are available, what is
the maximal functionality that can be provided?



Design queries

> Two basic design queries are:
- FixFunMinReq: Fixed a lower bound on functionality, minimize the resources.

- FixReqMaxFun: Fixed an upper bound on the resource, maximize the functionality

Given the functionality to be provided,
what are the minimal resources required?

FixFunMinReq

( )

design

pI‘Oblem l§-------.
)|

o

Pl S P

#' Li ":/'-}*\' .
r-’.‘s!'ﬁ’i\ " :g?i

\. J

FixReqMaxFun

Given the resources that are available, what is
the maximal functionality that can be provided?

> The two problems are dual.

>~ If you know how to solve these problems, you can also get the implementations with some book-
keeping. We will forget about the implementations.
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Given the resources that are available, what is
the maximal functionality that can be provided?

>~ Other variations of the problem, having constraints on both sides and mixed objectives,
are formally equivalent:
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Design queries

> Two basic design queries are:
- FixFunMinReq: Fixed a lower bound on functionality, minimize the resources.

- FixReqMaxFun: Fixed an upper bound on the resource, maximize the functionality

Given the functionality to be provided,
what are the minimal resources required?
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> We are looking for:
- A map from functionality to upper sets of feasible resources; h:F —UR
- A map from functionality to antichains of minimal resources. h: F—- AR
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Optimization semantics

> This is the semantics of FixFunMinReq as a family of optimization problems.
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How can category theory help?

> For engineering, having only a categorical model of the domain is of limited utility.
How does it help solving a real problem™ ?

descriptive VS actionable
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> For engineering, having only a categorical model of the domain is of limited utility.
How does it help solving a real problem™ ?

descriptive VS actionable

> Possible risk: engineer reading descriptive papers expecting actionable information,
gets disappointed, dismisses category theory as abstract nonsense.

Backprop as Functor:
A compositional perspective on supervised
learning

Brendan Fong David Spivak Rémy Tuyéras

Department of Mathematics, Computer Science and Artificial Intelligence Lab,

Massachusetts Institute of Technology Massachusetts L
These categorical analyses reveal striking structural

similarities between these three subjects, unified through
Abstract—A supervised learning algorithm searches overa Consider a supervis the idea that at .core, they Stl.ldy how agents e.)(Change
set of functions A — B parametrised by a space P to find the  of 3 supervised learnit ~ and respond to information. Indeed, asymmetric lenses

best approximation to some ideal function f: A — B. It does

this by taking examples (a, (@) € A x B, and updating the PProXmation to-a £ are simply learners with trivial state spaces, and learners

: . the supervisor provid
parameter accarding to some rule. We define a category where ] . . .
these update rules may be composed, and show that gradient €ach of which is supf themselves are open games obeying a certain singleton

descent—with respect to a fixed step size and an error taken by f, ie. b = | best response condition. ertlng Lens and Game for the

function satisfying a certain property—defines a monoidal 3 gpace of functions o . . . . . . . .
functor from a category of parametrised functions to this i1 coovch This is for reSpeCthe Categorles (defmed m [ |- 14] and [ | l]), this gives
a function I: PXxX A - embeddings

category of update rules. A key contribution is the notion

of request function. This provides a structural perspective

on backpropagation, giving a broad generalisation of neural Parameter p € P as I(]

networks and linking it with structures from bidirectional (#,b) € A X B, the lea Lens — Learn — Game.
programming and open games. hypothetical approxim




How can category theory help?

> For engineering, having only a categorical model of the domain is of limited utility.
How does it help solving a real problem™ ?

descriptive VS actionable

> Possible risk: engineer reading descriptive papers expecting actionable information,
gets disappointed, dismisses category theory as abstract nonsense.

>~ Perhaps, it is about workflow systematization.

MapReduce: Simplified Data Processing on Large Clusters

Jeffrey Dean and Sanjay Ghemawat
jeff@ google.com, sanjay @ google.com

Google, Inc.

Abstract

MapReduce 1s a programming model and an associ-
ated 1mplementation for processing and generating large
data sets. Users specify a map function that processes a
key/value pair to generate a set of intermediate key/value
pairs, and a reduce function that merges all intermediate
values associated with the same intermediate key. Many
real world tasks are expressible in this model, as shown
in the paper.

given day, etc. Most such computations are conceptu-
ally straightforward. However, the input data is usually
large and the computations have to be distributed across
hundreds or thousands of machines in order to finish in
a reasonable amount of time. The issues of how to par-
allelize the computation, distribute the data, and handle
failures conspire to obscure the original simple compu-
tation with large amounts of complex code to deal with
these issues.

As a reaction to this comvlexitv. we designed a new




How can category theory help?

For engineering, having only a categorical model of the domain is of limited utility.
How does it help solving a real problem™ ?

descriptive VS actionable

Possible risk: engineer reading descriptive papers expecting actionable information,
gets disappointed, dismisses category theory as abstract nonsense.

Perhaps, it is about workflow systematization.

My own experience: CT helps greatly to define and implement solutions
for “compositional domains” like co-design, computation graphs, etc.

- Both my papers and my code were much shorter!



Looking for patterns

> We distinguish among:
- Models: the data of the problem. Modeled as a category.
- Problem: the type of question that we want to ask.

- Question: an instance of the problem; to which we need to find an Answer.

Models Problem Questions Answers
Path minimum a pair g path in the gr.a ph +
: Cost-labeled graphs certificate of optimality;
planning cost of nodes . .~
or a proof of infeasibility.
_desi upper set
Co-design co-design FixFunMinReq functionality PP

diagram of resources



Looking for patterns

> We distinguish among:

- Models: the data of the problem. Modeled as a category.

- Problem: the type of question that we want to ask.

- Question: an instance of the problem; to which we need to find an Answer.

Path
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Looking for compositionality

>  Can we find a compositional structure?
- Models are morphisms in a category;
- “Solvers” are morphisms in another category;

- Functoriality of P: if two models compose,
you can find the solver by composing the solvers.

Models Problem Questions Answers

Mo T (0 )

FixFunMinReq
DP(F;R) ————————» (F —————» UR)
Pos
FixFunMinReq
DP(F;R) ——————— % ( F R )

FixFunMinReq
pp ————» UPos

*technical assumptions?

FixFunMinReq



Looking for compositionality

>  Can we find a compositional structure?
- Models are morphisms in a category;
- “Solvers” are morphisms in another category;

- Functoriality of P: if two models compose,
you can find the solver by composing the solvers.

Models Problem Questions Answers

Mo T (0 )

>~ Note: Functoriality is very strong.

Compile : syntactic units — IR units
Compile(f; § f,) = Compile(f,) s Compile(f,)

Compile(f; § /) = a(Compile(f;), Compile(f;))



Monoidal functoriality is very strong

> Translating from Types to SerialPrograms, a category ot serialized computation.

- Note: whether the compiler has any freedom of choice here
depends on the semantics of your programming language.

(f®8)sh
a: XXY —>Z X /
h —Z
X,y = h(f(x),8(»)) y —1 &
CX — Cf CX Cf —
Ch|\—Cz Ch ——CZz
CY Cg — CY — Cg
(Cf X Idey) s (Idey X Cg)§Ch (Idey X Cg) 5 (Cf X 1dpy) s Ch
SerialPrograms f:A>B

“PreMonoidal” category allowing
monoidal composition only with identities. Idg X fXIdy :UXAXV - UXBXV



Enrichment for modeling performance

If we use functors, each model is mapped to 1 solver, the only “right” one.
Rather, there are typically many solutions for each problem.
Solutions often have a notion of “quality” over which they can be ranked.

Profunctors / enriched categories appear naturally in this context.

Models Problem Questions Answers

P
M—|—>(Q—|—>A)
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Profunctors / enriched categories appear naturally in this context.
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> Still missing:
- 'What would be a computable (finite) representation of the problem?

- When do we start talking about computational resources?

“Procedures” vs functions.
We cannot even

represent all posets.

/ AN

FixFunMinReq )
UR

DP(F; R) ————— ——————p ( F

| Pos

Multiple “procedures”
“implement” the same function.



» Coming up: remarks about making mathematical problems computable.

> Dr. Turing, please forgive some poetic license!

It’s cool, mate!
lm")reciSiOn IS o Sigh

Wenn das (Dactbematcik OWPO“ weak mind.

ist, bin icb ein Strauls.




From math to implementation

Mathematical phase Constructive phase Algorithmic phase
Prove the problem is Define a constructive Find an effective method
well posed and that method to find the solution. for a specific model

a solution exists. of computation.

Implementation

Implement on a
specific machine,
with limited resources.



Mathematical phase

Prove the problem is
well posed and that
a solution exists.

For any vector v,
dn: (n,v) = ||v||.

From math to implementation

Constructive phase Algorithmic phase
Define a constructive Find an effective method
method to find the solution. for a specific model

of computation.

2 2 2
M<—vl+vz+v3

Implementation

Implement on a
specific machine,
with limited resources.

n = “U“ m<—Newt0n<a|—>1/\/5,M>

return (muv,, mv,, mvs)

Carmack’s Fast inverse square root

float InvSqrt(float x){
float xhalf = @.5T % Xx;
int 1 = *x(intx)&x;
Ox5f3759df - (i >> 1);
*(float*)&i;
x = x%(1.5f = xhalfsxkx);

1

X

return x;

1] ARENA

// store floating-point bits in integer
// initial gquess for Newton's method

// convert new bits into float

// One round of Newton's method




From math to implementation

Mathematical phase Constructive phase Algorithmic phase Implementation
Prove the problem is Define a constructive Find an effective method Implement on a
well posed and that method to find the solution. for a specific model specific machine,

a solution exists. of computation. with limited resources.

“Secure one-way function:”
whoever has the resources to
find a collision would rather use

Philosophical perspectives sarden-hose cryptanalysis.

— Same thing if you are a constructivist ——
p—————Same thing if you are a finitist —m———

———————————— Same thing if you are an ultra-finitist ——————



From math to implementation

Mathematical phase Constructive phase Algorithmic phase Implementation
Prove the problem is Define a constructive Find an effective method Implement on a
well posed and that method to find the solution. for a specific model specific machine,

a solution exists. of computation. with limited resources.

Philosophical perspectives

— Same thing if you are a constructivist ——
p—————Same thing if you are a finitist —m———

———————————— Same thing if you are an ultra-finitist ——————

Engineering syncretism:
I will believe in any philosophy or pantheon of deities,
if it helps me getting things done with less stress.



Mathematical phase

Prove the problem is
well posed and that

a solution exists.

DP
FixFunEVIinReq

UPos
h: F —> UR

(In this context, DCPO and Scott Continuity

Solving co-design problems

DP

comp

FixFunMinReq

!

UPos

comp

h: F—- UR

1) Allow only posets P such that UP
is a direct complete partial order.

2) Allow only DPs such that
h: F —> UR

is a Scott-Continuous map.

are like compactness and Cauchy sequences

for analysis: they ensure that some type of

sequences will converge somewhere.)

Constructive phase

Define a constructive
method to find the solution.

Algorithmic phase

Find an effective method
for a specific model
of computation.

DPdiscrete

FixFunMinReq

!

UPOSdiscrete

h: F—- AR

Allow only upper sets
that can be represented
as finite anti-chains.

S =1 Min S

sufficient condition:

All posets are finite.

Implementation

Implement on a
specific machine,
with limited resources.



Solution formulas

» Suppose we are given the function », : F, - AR, for all nodes in the co-design graph.

-------------------------------------------------------------------------------------------------------
. 3
* *

* *
*
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> Can we find the map /» : F — AR for the entire diagram?

> By induction, we just need to work out the the composition formulas
for all operations we have defined.




What about loops?

chassis must chassis requires

carry battery motors to move
X L B
battery chassis motor

— /

battery must power motor

4 )
functionality % . engineer costs
W o Dl
costs > h(functionality)
\_ J E
O N O
: lé customer
el L
functionality = ¢(costs)

\ J




Trace vs Conway

~ It is convenient to use the Conway operator rather than the Trace operator.

- These are equivalent, in the sense that I can define Trace from Conway and vice-versa.

............................................................................................................................

”””
..........................................................................................................................



Solution for Conway form

h|00p
fi ) i r
F1 fo h STTEIIE v o ° v
R
Fo L ) 0

- o
-------------------------------------------------------------------------------------

Theorem. The set of minimal feasible resources can be obtained
as the least fixed point of a monotone function in the space of anti-chains.

hioop : F1 — antichains(R)
fi +— least-fixed-point(®;, )

®¢, : antichains(R) — antichains(R)

S — Min| [JA(f;,r)N T
R

1

reS



Solution for Conway form

h|00p
f, i r ’
F1 fs h P ., ..... V‘ o ©
R
952 h g *e* iR

- o
-------------------------------------------------------------------------------------

S C antichains(R)

So = {Llx} g
Sin = B4(5) —r
-
15

If the iteration diverges, it is a certificate of infeasibility.



What about multiple loops?

> Generally speaking, a fixed point iteration will converge at the w-th step,
where w is the first infinite ordinal - a countable number of steps.

> But: if we close 2 loops, we need to compute a fixed point of a fixed point:

this will take @? steps.

>~ The properties of trace allows us to only reduce to 1 loop.




Reducing to a normal form

loopb
series
series

loopb
|

series

/

series

/ '\
par
/ N\

N

C

b Id



Complexity

>~ The complexity of solving the problem depends on the “thickness”
of the “minimal feedback arc set” cut to create the normal form.

- Not combinatorial in the size of the implementations!




Bounded approximations

> We can obtain bounded approximation with converging sequences
considering a category of DP intervals (twisted arrow category).




Conclusions

A useful direction for applied category theory is looking at modeling problems,
rather than just modeling the structure of the domain.

Models Problem Questions Answers

P
Mo o— (0 ——— 4)

It seems that many synthesis problems have a compositional structure:
models and solvers are categories, linked by a functor-like P arrow.

Enriched categories may help modeling performance levels and resources usage.

Monads, operads, etc. and other more advanced topics that we never mentioned
start to shine at this level of abstraction.



