Applied Compositional Thinking for Engineers

Spring 2021

Recital 1

Today's plan

- Examples of:
 - Semigroups
 - Monoids
 - Groups

• Today at **16:15 CET** at <u>http://bit.ly/3rbg6rW</u> we have an **office hour**

• Google doc for today available at: <u>http://bit.ly/3eh2Oqv</u>

Exercises

- We are going to have exercises on a weekly basis:
 - Theoretical exercises (due in 10 days from publication)
 - Programming exercises in Python, autograded with GitHub Classroom Due on the last day of the course
- We will announce them soon

Magmas

Definition (Magma). A magma S is a set S, together with a binary operation $\Im: \mathbf{S} \times \mathbf{S} \to \mathbf{S},$

Example (cross-product):

$$S = \mathbb{R}^3$$

Definition (Semigroup). A *semigroup* **S** is a set **S**, together with a binary operation $\Im: \mathbf{S} \times \mathbf{S} \to \mathbf{S},$ called *composition*, which satisfies the *associative* law: $(x \circ y) \circ z = x \circ (y \circ z)$ for all $x, y, z \in S$.

• Warmup example: let's look at max on natural/real numbers:

 $x \stackrel{\circ}{,} y \doteq \max(x, y)$

What do we need to check?

Definition (Semigroup). A *semigroup* **S** is a set **S**, together with a binary operation $\Im: \mathbf{S} \times \mathbf{S} \to \mathbf{S},$ called *composition*, which satisfies the *associative* law: $(x \circ y) \circ z = x \circ (y \circ z)$ for all $x, y, z \in S$.

• Warmup example: let's look at max on natural/real numbers:

 $x \ y \doteq \max(x, y)$

What do we need to check? Just associativity:

 $\max(\max(x, y), z) = \max(x, \max(y, z))$

• Example (strings): • $A = \{0, \bullet\}$ • S is the set of all non-empty • $00 \cdot 0 \cdot 0$ • $00 \cdot 0 \cdot 0$ • $00 \cdot 0 \cdot 0 \cdot 0$ • $00 \cdot 0 \cdot 0 \cdot 0$ • $00 \cdot 0 \cdot 0 \cdot 0 \cdot 0$ • $00 \cdot 0 \cdot 0 \cdot 0 \cdot 0 \cdot 0$

• Example (true-false) $S = \left[false, true \right], \langle \\ \frac{\Lambda}{false} true \\ \frac{\Lambda}{false} false true \\ true \\ false true \\ \end{cases}$

Example (discrete-time linear systems)

Definition (Discrete-time linear systems). A discrete-time linear time-invariant proper open system is defined by three matrices A, B, C. Together they give a recurrence of the type

$$x_{k+1} = \mathbf{A}x_k + \mathbf{B}u_k$$
$$y_k = \mathbf{C}x_k$$

If x has dimension $n \ge 1$, u dimension $m \ge 1$ and y dimension $p \ge 1$, then A has dimension $n \times n$, *B* has dimension $n \times m$, *C* has dimension $p \times n$.

V

Composition: Xu+J = AXu + BUKYu = CXu2 d_1 : Xuti \tut1] \FC [$V_{\mathcal{U}} = G \cdot \mathcal{Z}_{\mathcal{V}}$

$$\begin{aligned}
\mathcal{L}_{\mu} = E \mathcal{L}_{\mu} + F \mathcal{L}_{\mu} \\
\mathcal{L}_{\mu} = G \mathcal{L}_{\mu} \\
\mathcal{L}_{\mu} + \begin{pmatrix} B \\ 0 \end{pmatrix} \mathcal{L}_{\mu} \\
\mathcal{L}_{\mu} \end{pmatrix} \\
\end{aligned}$$

 $d_3:$ Sut = HSh + IVV Associativity: $(d_{n}, d_{2}), d_{3} : \begin{bmatrix} x_{u+1} \\ z_{n+1} \\ S_{u+1} \end{bmatrix} = \begin{pmatrix} A & 0 & 0 \\ FC \in O \\ O & JG & H \end{pmatrix} \begin{bmatrix} x_{u} \\ z_{u} \\ S_{u} \end{bmatrix} + \begin{bmatrix} B \\ O \\ O \\ J \end{bmatrix} U_{u}$ $W_{u} = JS_{u}$ d_1 , $(d_2$, d_3) = r fxercise

Example (growing plants)

$$X = \{sphout, young, mature, old
Ut T: X \rightarrow X be "deve
T(sphout) = young
T(young) = mature
T(old) = dead
T(dead) = dead
To To T: X \rightarrow X =
$$< S = \{T^n \mid n \in N\}$$$$

• A **monoid** is a semigroup with a neutral element.

Warmup example:

Example (free monoid)

Example (true-false)

<
$$false, true J, \Lambda, -$$

+rue $\Lambda \times =$

= \times

Example (continuous dynamical systems)

Definition (Continuous-time dynamical system). A dynamical system on \mathbb{R}^n may be defined by a function

$$f: \mathbb{R}^n \to \mathbb{R}^n.$$

A trajectory of a dynamical system is a function $x : \mathbb{R} \to \mathbb{R}^n$ such that

 $\dot{x}_t = f(x_t).$

We use the notation \dot{x} to abbreviate dx/dt.

Composition:

Assume that for any
$$X_0$$
 we have that X_0 we have that X_0 .
Biven X : where are we that $T_S: \mathbb{R}^n \to \mathbb{R}^n$ (that $T_S: \mathbb{R}^n \to \mathbb{R}^n$ (that $T_S: \mathbb{R}^n \to \mathbb{R}^n$ (that $T_S: \mathbb{R}^n \to \mathbb{R}^n$ (the the term of term of the term of the term of term of the term of ter

 $T_{\delta_1}, T_{\delta_2} = T_{\delta_1 + \delta_2}$ $T_{n}, T_{n}, T_{n} =$ $T_{1}^{\circ}, T_{1}^{\circ}+f_{3}^{\circ} = T_{1}^{\circ}+f_{2}+f_{3}^{\circ}$ $=T_{S_{1+\delta_2}}T_{3}$ $= Tf_{1}; (Tf_{2}; Tf_{3})$ $T_{\delta=0}, T_{\delta} = T_{\delta} = T_{\delta}, T_{\delta}$ $Tr = \{Tr \mid \delta \in \mathbb{R}, 0\}$ $\langle Tr, 0, T_0 \rangle$ TrxTr ---, Tr

Associativity

Neutrality

• Example (discrete-time linear systems):

$$X_{U+1} = A_X_U + B_U_U$$

 $y_U = C_X_U$

Example (cross-product):

Does the magna torm a monoid with appropriate neutral el?

Warmup example (taking the negative):

Warmup example (taking the inverse):

$$< \mathbb{R}_{(j)}, \cdot, \wedge >, 1$$

Example (true-false):

- Example (group theory in the bedroom)
- Consider four configurations of your mattress:

- This is called the Klein Vierergroup (4-group):
 - · each op. is its inverse . neutral is I

Example (orthogonal matrices)

see boon

• Example (free group):

See book

• Example (properties):

ber explages

Summary

- One way to define algebraic structure is by refinement: progressively add more properties that the structure must satisfy.
- Today we defined these structures:
 - A magma is a set with a binary operation.
 - A **semigroup** is a set with an **associative** operation
 - A monoid is a semigroup with a neutral element.
 - A group has an "inverse" operation.
- The other direction, which require more imagination creativity, is **generalization**, in the sense of imagining a broader structure that contains the current structure as a particular case.

