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Building in layers

‣ Last week:  
- A magma is a set with a binary operation of composition. 
- A semigroup is a magma whose composition is associative. 
- A monoid is a semigroup with a neutral element. 
- A group has is a monoid with an “inverse” operation. 

 



Building in layers

‣ Today: we will generalize, rather than refine. 
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Semicategories



Semigroups

‣ Examples: 

De�nition (Semigroup). A semigroup � is a set �, together with a binary opera-
tion

#� � ◊ �� �,
called composition, which satis�es the associative law:

(� # �) # � = � # (� # �)
for all �, �, � � �.

��, ��
��,min� ��,max���,+� ��,max�



Example: states of development of a plant

Semigroups



Semigroups

��+1 = ��� + ����� = ���
Example: discrete time linear time-invariant systems of the form: 
 
 
 
with the constraint that input and output have the same 
dimension. 

- The composition is the series composition. 
- The composition of linear system is linear  
→ we have a semigroup.
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Semigroups

��+1 = ��� + ����� = ���
Example: discrete time linear time-invariant systems of the form: 
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Example: discrete time linear time-invariant systems of the form: 
 
 
 

‣ Objects:  

‣ Morphisms:  

‣ Composition:  

‣ Associativity:  

Semicategories

��+1 = ��� + ����� = ���

�

� # �



Example: states of a plant 
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Example: states of a plant 
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From semigroups to monoids

A monoid is a semigroup with a neutral element. 

‣ Examples

De�nition (Monoid). Amonoid� is:
Constituents
1. a set�;
2. a binary operation #� � ◊���;
3. a speci�ed element id ��, called neutral element.

Conditions
1. Associative law: (� # �) # � = � # (� # �);
2. Neutrality Laws: id # � = � = � # id.

new

new

��, ��
��,min� ��,max���,+� ��,max�



From semigroups to monoids

‣ Sometime we can “formally add” a neutral element to a semigroup. 

‣ Example: 

��,min�



From semigroups to monoids

‣ Sometime we can “formally add” a neutral element to a semigroup. 

‣ Example: 

��,max�



From semigroups to monoids

‣ Sometime we can “formally add” a neutral element to a semigroup. 

‣ Example: 

��� # �� = ���



Example: states of development of a plant

From semigroups to monoids



Example: states of development of a plant

From semicategories to categories



Example: states of development of a plant

From semicategories to categories



Categories

new

new



Example: states of development of a plant

Categories



Example: sets and functions

Categories



Example: finite sets and functions

Categories

Example: a specified collection of sets and functions



Example: matrices over the real numbers

Categories



Example: finite-dimensional vector spaces over the real numbers

Categories

Example: all vector spaces over the real numbers



Example: monoids and their morphisms 

Categories



Given a monoid 

we can think of it as a special case of a category.   

A monoid as a category



A specific monoid, viewed 
as a category

Level shifts

The category of all monoids



Summary so far
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