Applied Compositional Thinking for Engineers

Spring 2021

Monads (continued)

Another perspective on Monads

- Kleisli perspective:
 - Monads can be used to model "generalized objects" and "generalized morphisms"
 - Examples: powersets, probabilities, intervals, functions with side-effects, ...
 - Basic idea:

- M-algebras perspective:
 - Monads can be used to "encode theories of operations" or to "blueprint algebraic gadgets"
 - Examples: the theory of monoids, monoid actions, ...
 - Basic idea:

• What is a "formal expression" ?

[[♠] * [→]] * [[♠] * [♠] * [↗]] * [[♠]]

• What is a "formal expression"?

[[♠] * [→]] * [[♠] * [♠] * [↗]] * [[♠]]

[[♠]] * [[]] * [[↗]]

Evaluating formal expressions

• What do we mean by "evaluating"?

Monad for formal expressions

• Suppose we have a monad that maps a set to the set of formal multiplications of its elements:

Monad for formal expressions

• Suppose we have a monad that maps a set to the set of formal multiplications of its elements:

Evaluating/calculating formal multiplications can be encoded using the notion of an <u>M-algebra</u>

[♠] * [→] → ♠ + →

Algebras for a monad

Definition (Algebra of a monad). Let $\langle M, un, mu \rangle$ be a monad on a category **C**. An algebra of *M* (also called an *M*-algebra) is specified by:

Constituents

- 1. an object *X* of **C**;
- 2. a morphism $a : M(X) \rightarrow X$ of **C**.

Conditions

1. Unit: the diagram

$$X \xrightarrow{\operatorname{un}_X} M(X)$$

$$Id \qquad \downarrow a$$

$$X \xrightarrow{\operatorname{un}_X} M(X)$$

commutes.

2. Composition: the diagram

$$(M ; M)(X) \xrightarrow{Ma} M(X)$$
$$mu_X \downarrow \qquad \qquad \downarrow a$$
$$M(X) \xrightarrow{a} X$$

commutes

Blueprinting monoids MX = "formal product of elements of X" $MX \xrightarrow{a} X$ "an operation for evaluating formal groducts" <u>Unit of the mornal</u> $m_X: X \longrightarrow MX$ $X \longmapsto [X]$ "formul product of just "x" alone"

Blueprinting monoids MX = "formal products of elements of X" MX ~ X "an operation for evaluating formal products" Unit of the monad unx: X -> MX X +> [x] "formul product of just "x" alone $\chi \xrightarrow{\ddagger} \gamma \qquad \chi \longrightarrow \ddagger \chi$ unx Junx J $MX \longrightarrow MY \qquad (x) \longmapsto (fx)$

Blueprinting monoids MX = "formal products of elements of X" $MX \xrightarrow{a} X$ "an operation for evaluating formed products" <u>Multiplication of the monad</u> $mu_X : MMX \longrightarrow MX$ $[[x_1] \neq [x_2] \neq [(x_1)] \mapsto [x_1] \times [(x_2] \times [(x_3)])$

Blueprinting monoids MX = "formed products of elements of X" $MX \xrightarrow{a} X$ "an operation for evaluating formed products" <u>Multiplication of the monad</u> $Mu_X : MMX \longrightarrow MX$ $[[X_n] \times [Y_2]] \times [[X_1]] \mapsto [X_1] \times [X_2] \times [[X_3]]$ "remove the order brudets"

Blueprinting monoids

$$MX = "proved products" of doments of X"$$

$$MX \xrightarrow{a} X = m operation for evaluating formed products"$$

$$Multiplication of the monoid
$$m_{X} : MMX \longrightarrow MX$$

$$[[x_{n}] \times [x_{n}]] \mapsto [[x_{n}] \times [x_{n}] \times [x_{n}]$$

$$m_{X} \times [x_{n}] \times [x_{n}] \times [x_{n}] \times [x_{n}] \times [x_{n}]$$

$$MMMX \xrightarrow{m_{X}} MMX$$

$$m_{X} \times [[x_{n}] \times [x_{n}]] \times [[x_{n}]] \mapsto [[x_{n}] \times [x_{n}] \times [x_{n}]$$

$$m_{X} \times [[x_{n}] \times [x_{n}]] \times [[x_{n}]] \mapsto [x_{n} \times [x_{n}] \times [x_{n}]$$

$$m_{X} \times [[x_{n}] \times [x_{n}]] \times [[x_{n}]] \mapsto [x_{n} \times [x_{n}] \times [x_{n}]$$$$

$$X = \{2^{1}, 2, 3, \dots \}$$

$$MX = \{C_{1}, C_{1}, C_{2}, \dots, [C_{0}] * [C_{1}], \dots, [C_{1}] * [C_{2}] * [C_{3}], \dots \}$$

$$Let's define "*" to mean "addition"$$

$$MX = "formal products of elements of X"$$

$$MX \xrightarrow{a} X "an operation for evaluating formal graduets"$$

$$X = \{2, 1, 2, 3, \dots \}$$

$$MX = \{[1], [n], [2], \dots [[n] * [n]], \dots, [[n] * [n] * [n]], \dots \}$$

$$Let's define "*" to mean "addition"$$

$$MX \xrightarrow{a} X "addition map"$$

$$[[n] * (n]] \longrightarrow 1 (="n+2+3")$$

MX ~> X Unit Law

Proposition:

Blueprinting monoids MX = "formal products of X" MX => X "an operation for evaluating formal products" <u>Proposition:</u> M-algebra structure on X => X is equipped with a monoid structure

• the neutral element of X corresponds to a ([])

Blueprinting monoids MX = "formal products of X" MX = X " an operation for evaluating formal products" Proposition: M- algebra \iff is equipped with a monoid structure or X

- the neutral element of X corresponds to a ([])
- the composition in X corresponds to the action of a [x_1]*[x_2] ~ X,X2

Blueprinting monoids
MX = "formal preducts of X"
MX = X "an operation for evaluating formal grodueds"
Proposition:
M- algebra
$$\implies$$
 X is equipped
structure \implies with a monoid structure
on X
• the neutral element of X corresponds to a (CJ)
• the composition in X corresponds to the action of a
 $[X_n] \times [X_2] \stackrel{a}{\longrightarrow} X_n X_2$
• associativity, unitality of X encoded by M-algebra axioms

Actions as M-algebras

Actions as M-algebras

Actions as M-algebras

$$(\mathcal{U}_{X_{j}}; \alpha)(x) = \alpha(\mathcal{U}_{X_{j}}(x)) = \alpha(\mathcal{U}_{X_{j}}, \mathcal{U}_{X_{j}}) \stackrel{\mathbb{P}}{=} x$$

composition law: $(X \times A) \times A \xrightarrow{Ma} X \times A$ mux la $X \times A \longrightarrow X$

$$(Ma; a)((x, m), m') = a((a \times Id_A)((x, m), m')) = a(a(x, m), m')$$

$$(MN_{\chi}; a)((\chi_{1}m), m') = a(mu_{\chi}((\chi_{1}m), m')) = a((\chi_{1}mm'))$$

Morphisms of M-algebras

Definition (*M*-algebra morphism). Let $\langle M, un, mu \rangle$ be a monad on a category **C**, and let $\langle X_1, a_1 \rangle$ and $\langle X_2, a_2 \rangle$ be algebras of *M*. A morphism $\langle X_1, a_1 \rangle \rightarrow \langle X_2, a_2 \rangle$ of *M*-algebras is specified by:

Constituents

1. A morphism $f : X_1 \rightarrow X_2$ in **C**.

Conditions

1. The diagram

$$\begin{array}{ccc} M(X_1) & \stackrel{Mf}{\longrightarrow} & M(X_2) \\ a_1 & & \downarrow a_2 \\ X_1 & \stackrel{f}{\longrightarrow} & X_2 \end{array}$$

commutes.

Morphisms of M-algebras

 $M X = X \times A$

Category of M-algebras

Definition (Category of *M*-algebras). Let $\langle M, un, mu \rangle$ be a monad on a category **C**. The *category of M*-algebras **C**^{*M*} of the monad *M* is specified by:

- 1. Objects: M-algebras;
- 2. Morphisms: M-algebra morphisms;
- 3. *Identities*: given an *M*-algebra $\langle X, a \rangle$, its identity morphism is Id_X ;
- 4. *Composition*: is induced by the composition of morphisms in **C**.

- Examples:
 - List monad: category of algebras is the category of monoids
 - Writer monad: category of algebras is the category of monoid actions
 - Powerset monad: category of algebras is the category of complete semilattices

.

Definition (Kleisli morphisms). Let $\langle M, un, mu \rangle$ be a monad on a category **C**, and let $X, Y \in Ob_{\mathbb{C}}$. A *Kleisli morphism* $X \to Y$ is morphism of **C** of the form $X \to MY$.

Definition (Kleisli morphisms). Let $\langle M, un, mu \rangle$ be a monad on a category **C**, and let $X, Y \in Ob_{\mathbb{C}}$. A *Kleisli morphism* $X \to Y$ is morphism of **C** of the form $X \to MY$.

Definition (Kleisli composition). Let $\langle M, un, mu \rangle$ be a monad on a category **C**, let $X, Y, Z \in Ob_{\mathbb{C}}$, and let $f : X \to MY$ and $g : Y \to MZ$ be morphisms in **C** (so, they are Kleisli morphisms). Their *Kleisli composition* is the morphism in **C** given by the composition

 $X \xrightarrow{f} M(Y) \xrightarrow{Mg} (M \stackrel{\circ}{,} M)(Z) \xrightarrow{mu_Z} M(Z).$

Definition (Kleisli morphisms). Let $\langle M, un, mu \rangle$ be a monad on a category **C**, and let $X, Y \in Ob_{\mathbb{C}}$. A *Kleisli morphism* $X \to Y$ is morphism of **C** of the form $X \to MY$.

Definition (Kleisli composition). Let $\langle M, un, mu \rangle$ be a monad on a category **C**, let $X, Y, Z \in Ob_{\mathbb{C}}$, and let $f : X \to MY$ and $g : Y \to MZ$ be morphisms in **C** (so, they are Kleisli morphisms). Their *Kleisli composition* is the morphism in **C** given by the composition

 $X \xrightarrow{f} M(Y) \xrightarrow{Mg} (M \stackrel{\circ}{,} M)(Z) \xrightarrow{mu_Z} M(Z).$

Definition (Kleisli category). Let $\langle M, un, mu \rangle$ be a monad on a category **C**. The *Kleisli category* **C**_M of the monad M is specified by:

- 1. Objects: $Ob(C_M) := Ob(C);$
- 2. Morphisms: $\operatorname{Hom}_{\mathbf{C}_M}(X, Y) := \operatorname{Hom}_{\mathbf{C}}(X, M(Y));$
- 3. *Identities*: $Id_X := un_X$;
- 4. Composition: Kleisli composition.

Definition (Algebra of a monad). Let $\langle M, un, mu \rangle$ be a monad on a category **C**. An algebra of *M* (also called an *M*-algebra) is specified by:

Constituents

- 1. an object *X* of **C**;
- 2. a morphism $a : M(X) \rightarrow X$ of **C**.

Conditions

1. Unit: the diagram

$$X \xrightarrow{\operatorname{un}_X} M(X)$$

$$\downarrow a$$

$$X \xrightarrow{\operatorname{Id}} X$$

commutes.

2. Composition: the diagram

commutes

Definition (*M*-algebra morphism). Let $\langle M, un, mu \rangle$ be a monad on a category **C**, and let $\langle X_1, a_1 \rangle$ and $\langle X_2, a_2 \rangle$ be algebras of *M*. A morphism $\langle X_1, a_1 \rangle \rightarrow \langle X_2, a_2 \rangle$ of *M*-algebras is specified by:

Constituents

1. A morphism $f : X_1 \rightarrow X_2$ in **C**.

Conditions

1. The diagram

$$\begin{array}{ccc} M(X_1) & \stackrel{Mf}{\longrightarrow} & M(X_2) \\ a_1 & & \downarrow a_2 \\ X_1 & \stackrel{f}{\longrightarrow} & X_2 \end{array}$$

commutes.

Definition (*M*-algebra morphism). Let $\langle M, un, mu \rangle$ be a monad on a category **C**, and let $\langle X_1, a_1 \rangle$ and $\langle X_2, a_2 \rangle$ be algebras of *M*. A morphism $\langle X_1, a_1 \rangle \rightarrow \langle X_2, a_2 \rangle$ of *M*-algebras is specified by:

Constituents

1. A morphism $f : X_1 \rightarrow X_2$ in **C**.

Conditions

1. The diagram

$$\begin{array}{ccc} M(X_1) & \stackrel{Mf}{\longrightarrow} & M(X_2) \\ a_1 & & \downarrow a_2 \\ X_1 & \stackrel{f}{\longrightarrow} & X_2 \end{array}$$

commutes.

Definition (Category of *M*-algebras). Let $\langle M, un, mu \rangle$ be a monad on a category **C**. The *category of M*-algebras **C**^{*M*} of the monad *M* is specified by:

- 1. Objects: M-algebras;
- 2. Morphisms: M-algebra morphisms;
- 3. *Identities*: given an *M*-algebra $\langle X, a \rangle$, its identity morphism is Id_X ;
- 4. *Composition*: is induced by the composition of morphisms in **C**.

Monad	Kleisli	Algebras
List	Lists generalize elements	Monoids
Writer	Accounting for side effects	Monoid actions
Powerset	Subsets generalize elements	Complete semilattices
Probability	Distributions generalize elements	Convex spaces
Interval	Intervals generalize elements	?
	and more	

