Applied Compositional Thinking for Engineers

Spring 2021

Operads

Plan

- ▶ What is an operad? The idea and examples
- ▶ Formal definition
- More examples

Monoids (Category with one object)

Monoids (Category with one object)

Monoids (Category with one object)

Categories

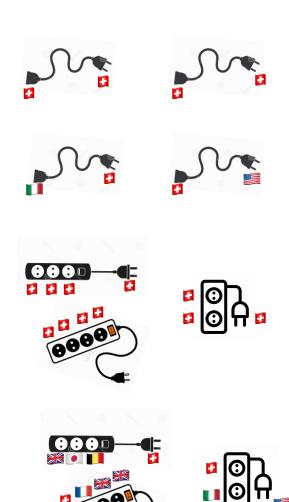
Operad with one object

Monoids (Category with one object)

Categories

Operad with one object

Operads (Multicategories)

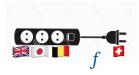


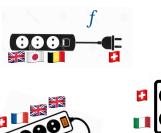
Terminology

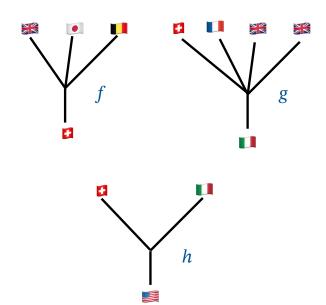
Objects	Sorts Types Things
Morphisms	Operations Arrangements
Composition	Nesting Composition formula

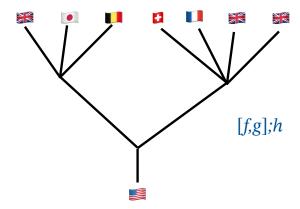
Terminology

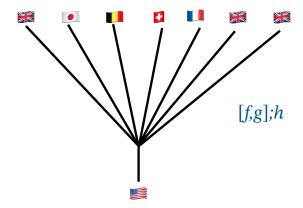
Operad	Multicatego	ry Colored op	Typed operad
Operad with one object	Operad	Untyped operad	Single-typed operad











3 source objects

7 source objects

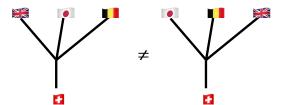
Composition

2 source objects

[f,g];h

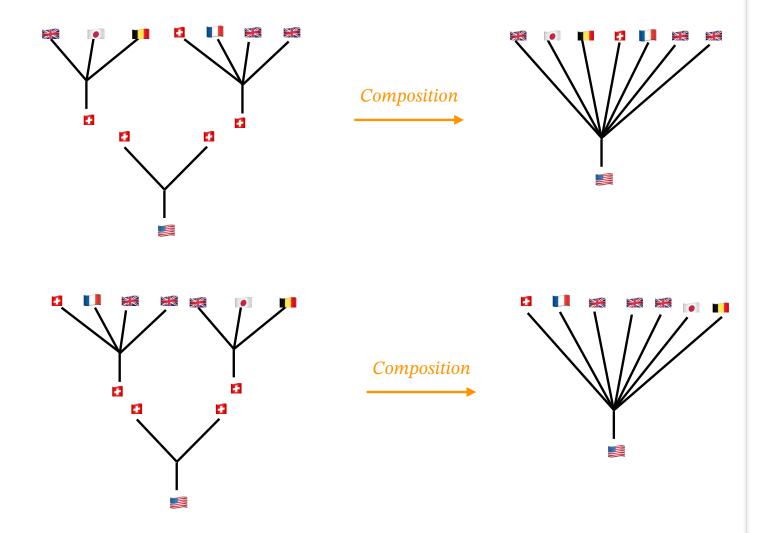
Symmetric vs unsymmetric

unsymmetric



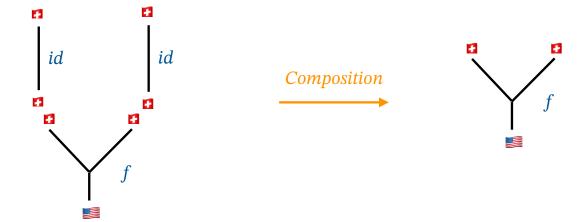
symmetric

Composition and symmetry

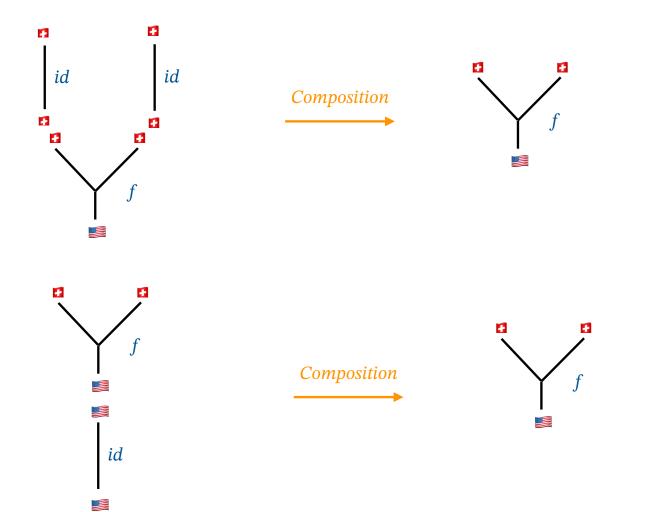


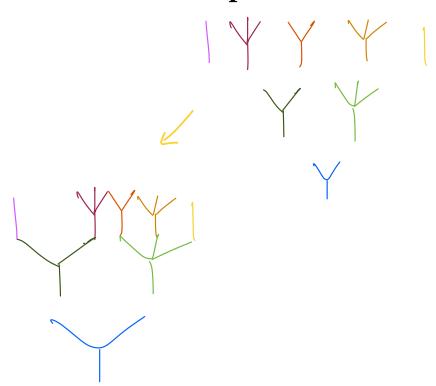
Identity morphisms

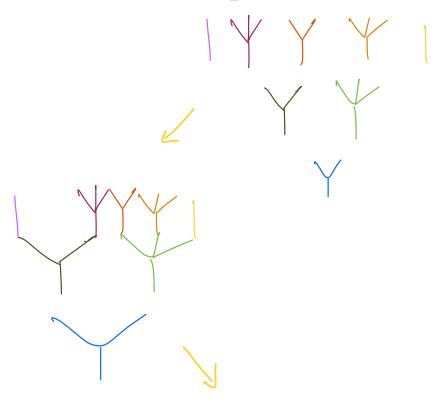
Identity morphisms

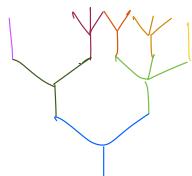


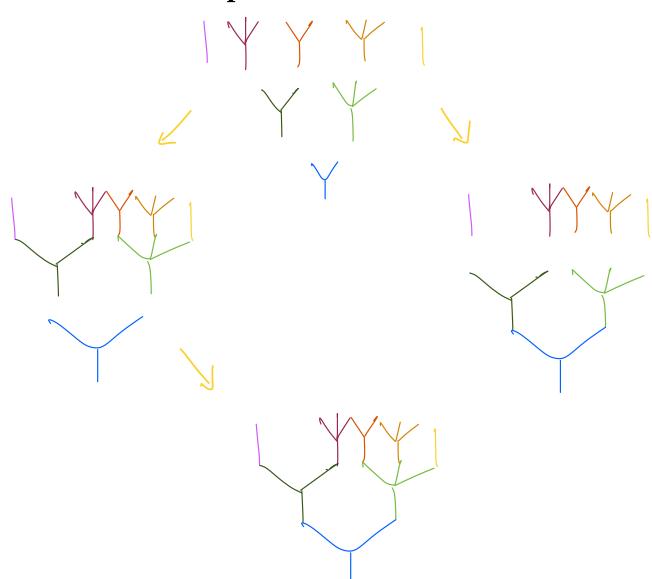
Identity morphisms

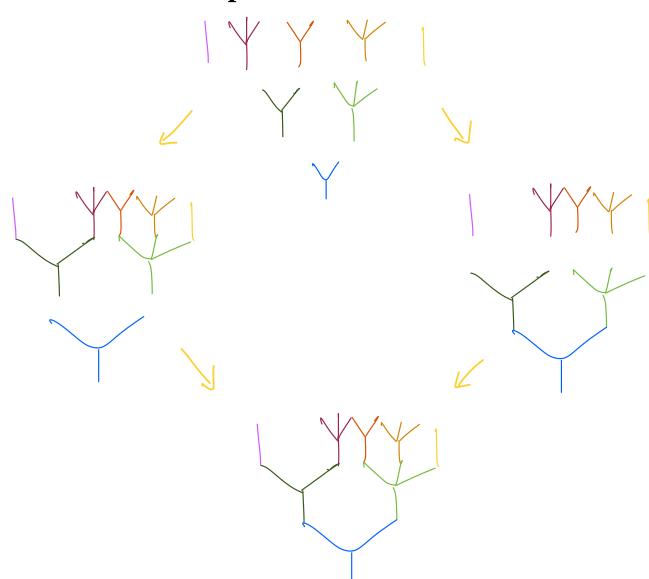




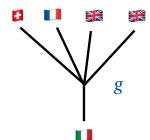




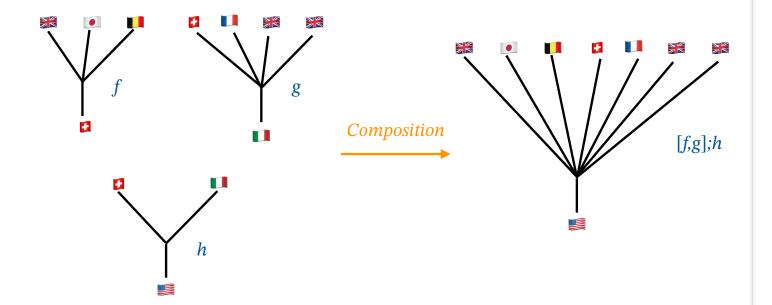




Notation



Notation



$$g = Set$$

Objects $ob(Set) = all sets$

Morphisms Set
$$([X_1, ..., X_n]; Y) = Hom_{set}(X_1 \times ... \times X_n; Y)$$

$$= functions X_1 \times ... \times X_n \longrightarrow Y$$

Objects
$$0b(Set) = all Sets$$

Morphisms $Set([X_1, ..., X_n]; Y) = Hom_{Set}(X_1 \times ... \times X_n; Y)$

$$= functions X_1 \times ... \times X_n \longrightarrow Y$$
• $Set([J; Y]) = Hom_{Set}(\{\xi * J; Y\}) = functions \{\xi * J \longrightarrow Y\}$
"elements of Y"

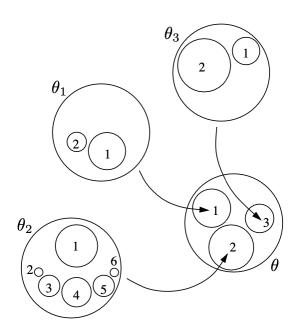
Morphisms Set
$$([X_1, ..., X_n]; Y) = Hom_{set}(X_1 \times ... \times X_n; Y)$$

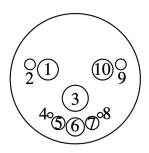
$$= functions X_1 \times ... \times X_n \longrightarrow Y$$

Morphisms Set
$$([X_1, ..., X_n]; Y) = Hom_{set}(X_1 \times ... \times X_n; Y)$$

$$= functions X_1 \times ... \times X_n \longrightarrow Y$$

Example: Operad of little disks





The <u>constituents</u> to define an operad O are:

Objects: a Set (or collection), denoted ob (O)

The constituents to define an operad of are:

Objects: a set (or collectron), denoted ob (O)

Morphisms: for each finite string [x1,...,xn] of objects (n + N)

and each object y, a set

O([x1,...,xn];y) "morphisms [x1,...,xn] \rightarrow y"

The constituents to define an operad O are:

Objects; a set (or collection), denoted ab (O)

Morphisms: for each finite string [x1,...,xn] of objects (n + N) and each object y, a set

 $\mathcal{O}([x_1,...,x_n];y)$ "morphisms $[x_1,...,x_n] \rightarrow y$ "

Identity morphisms: for each object X, a specified morphism $id_X \in \mathcal{O}([x],X)$

了. 子)

The constituents to define an operad of are:

Objects: a Set (or collection), denoted ab (O)

Morphisms: for each finite string [x1,...,xn] of objects (n + N) and each object y, a set

 $\mathcal{O}([x_1,...,x_n];y)$ "morphisms $[x_1,...,x_n] \rightarrow y$ "

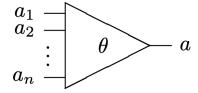
Identity morphisms: for each object x, a specified morphism id + O([x],x)

Composition: functions

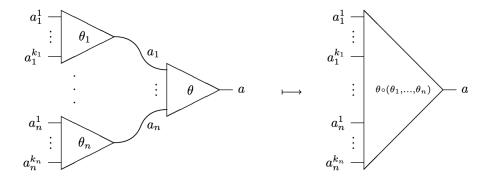
$$\mathcal{O}([x_1^1,...,x_n^1],y_1)\times ... \times \mathcal{O}([x_1^m,...,x_n^m],y_m) \times \mathcal{O}([y_1,...,y_m];z)$$

$$\mathcal{O}([x_1,...,x_n^m]; Z)$$

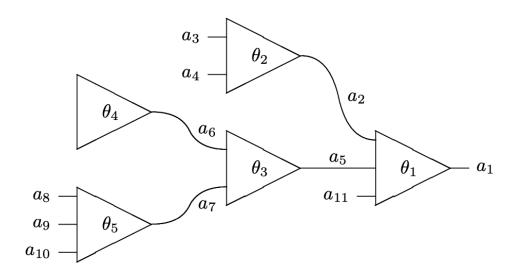
Operads: pictures



Operads: pictures



Operads: pictures

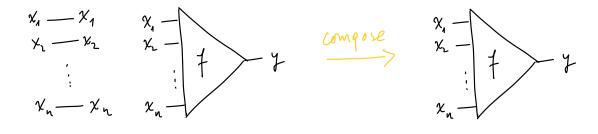


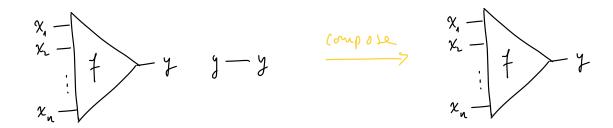
Associative law
$$[[f_1, ..., f_n]; g_1, [f_1, ..., f_n]; g_2, ..., [f_n, ..., f_n]; g_m]; h$$

=
 $[f_1, ..., f_n]; ([g_1, ..., g_m]; h)$

Unit laws

$$\forall f: [x_n, ..., x_n] \rightarrow y$$





Operad of multilinear maps

Morphisms
$$\mathcal{O}([V_n,...,V_n];W) = \text{multi-linear maps} V_n \times -... \times V_n \longrightarrow W$$

$$\mathcal{O}([];W) = \text{linear maps} |R \longrightarrow W$$

Composition Vsual composition

Operad from a moidal category

Let (e, 0,1) be a monoidal category. Define its associated operad be as follows:

Objects
$$Ob(O_c) = Ob(C)$$

Morphisms
$$\mathcal{O}_{e}((x_{1},...,x_{n});y) = Hom_{e}(x_{1}\otimes ...\otimes x_{n};y)$$

Operad from a moidal category

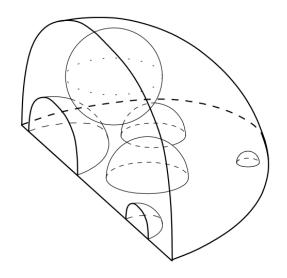
Morphisms
$$\mathcal{O}_{e}((\chi_{n},...,\chi_{n});y) = Hom_{e}(\chi_{0}\otimes...\otimes\chi_{n};y)$$

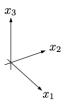
•
$$id_{\chi}$$
 in $f_{\varepsilon}([x], \chi)$ is id_{χ} in $Hom_{\varepsilon}(x, \chi)$

Morphisms Set
$$([X_1, ..., X_n]; Y) = Hom_{set}(X_1 \times ... \times X_n; Y)$$

$$= functions X_1 \times ... \times X_n \longrightarrow Y$$

Swiss cheese operad





$$1,1,2,2,2,3 \longrightarrow 1$$

